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Effective Field
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Gauge/Gravity Duality

§ Mathematical relation between gauge theories and higher
dimensional gravity theories found in string theory.

§ Strong-weak duality: if gauge theory is strongly coupled then gravity
theory is weakly coupled and vice versa.

§ Observables in a strongly coupled field theory (hard) can be
obtained from a classical gravity calculation (easy).

Gravity Side Gauge Theory Side
on-shell action Sgrav free energy f

black hole area A thermal entropy Sth
surface gravity at horizon κ temperature T

metric near boundary g
p4q
µν stress tensor xTµνy, p, ε

gauge field Aµ global sym. current xJµy, µ
. . . . . .

§ Gravity dual of QCD is not known. Bottom-up approach: construct
a gravity model that mimics the relevant features of QCD.
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Holographic Veneziano QCD

Gluons: Improved holographic QCD (Einstein-dilaton gravity)

Sg “ N2
cM

3
ş

d5x
?
´g

”

R ´ 4
3
pBλq2

λ2 ` Vg pλq
ı

λ ” eφ Ø TrF 2 sources the ’t Hooft coupling in YM theory
[Gürsoy, Kiritsis arXiv:0707.1324; Gürsoy, Kiritsis, Nitti arXiv:0707.1349]

Quarks: Tachyonic Dirac-Born-Infeld (DBI) action

Sf “ ´NfNcM
3
ş

d5xVf 0pλqe
´τ2a

´det rgab ` κpλqBaτBbτ ` wpλqFabs

Frt “ Φ1prq , Φp0q “ µ ,

tachyon τ Ø q̄q controls chiral symmetry breaking.
[Bigazzi et al. arXiv:0505140; Casero et al. arXiv:0702155]

Baryons: homogeneous solution of non-Abelian DBI + Cern–Simons action.
[Ishii, Järvinen, Nijs arXiv:1903.06169]

Veneziano limit: Nc Ñ8 and Nf Ñ8 with Nf {Nc “ x fixed
[Järvinen, Kiritsis arXiv:1112.1261]
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Phase Diagram
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Mass Radius Relation

GW190814

J0740+6620

f = 716 Hz

f = 1 kHz

f = 1.25 kHz

Kepler

static

Mmax

MTOV

APR
f = 329 Hz

4U 1702-429

NICER

10 12 14 16 18 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re [km]

M
/M

⊙

intermediate

9/16



Density Profile

M “ 1.4Md: Rmatch{Re “ 0.85 , M “ 2Md: Rmatch{Re “ 0.90
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Merger Dynamics and Waveforms

§ M “ 1.5` 1.5Md: Prompt collapse to BH with dilute matter torus.
SLyVQCD105-q10-M1500
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§ M “ 1.4` 1.4Md: Formation of a short lived (« 7.8ms) HMNS.
SLyVQCD105-q10-M1400
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§ M “ 1.3` 1.3Md: Formation of a long lived (ą 40ms) SMNS.

SLyVQCD105-q10-M1300
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Phase Transition Induced Collapse
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Power Spectral Density

h̃pf q ”

b

|h̃`pf q|2`|h̃ˆpf q|2

2 , h̃`,ˆpf q ”
ş

h22
`,ˆptqe

´i2πftdt
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EoS dependence of the Power Spectral Density

inspiral
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SLyVQCD105 550 1.93 2.53 3.77
SLyVQCD106 410 2.15 2.80 3.70 (4.06)

SLy 300 2.21 3.19 4.24
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Summary & Prospect

§ Gauge/gravity duality is used to build hybrid equations of state that
satisfy known theoretical and observational constraints.

§ Non-perturbative: deconfinement phase transition within one model.

§ Strong first order PT: V-QCD disfavours stable quark matter cores.

§ Slightly higher Mmax

MTOV
than nuclear matter models without PT:

Mmax

MTOV

ˇ

ˇ

ˇ

ˇ

V´QCD

“ 1.227`0.031
´0.016 vs.

Mmax

MTOV

ˇ

ˇ

ˇ

ˇ

nucl.

“ 1.203`0.022
´0.022

[Breu, Rezzolla arXiv:1601.06083]

§ Work in progress: holographic baryons at finite T by matching
hardron resonance gas + finite volume corrections.

§ Future: improve (e.g. finite quark masses, CSC phases, etc.) and
constrain (GWs, lattice QCD, FAIR, etc.) the V-QCD model.

§ Useful side product: transport coefficients
(viscosities, susceptibilities, resistivities, etc.)

[Hoyos, Jokela, Järvinen, Subils, Tarrio arXiv:2005.14205]
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Backup
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Constraints from Theory

§ By causality the speed of sound has to satisfy: c2
s “

`

Bp
Bε

˘

s
ă 1.

§ QCD is asymptotically free at large densities: c2
s Ñ 1{3.

10
2
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[Annala, Gorda, Kurkela, Nättila, Vuorinen arXiv:1903.09121]
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Constraints from Astrophysical Observations

§ NS-white dwarf binary PSR J0348+0432 (MSP J0740+6620)

Mmax ą 2.01`0.04
´0.04 p2.14`0.1

´0.09qMd.

[Antoniadis et al. arXiv:1304.6875, (Cromartie et al. arXiv:1904.06759)]

§ LIGO/Virgo: constrains on tidal deformability from GW170817

Λ1.4 “ 190`390
´120 , where ΛM “

2
3
k2

´

c2R{pG Mq
¯5

[LIGO/Virgo: arXiv:1710.05832, arXiv:1805.11579, arXiv:1805.11581]

§ NICER: constrain on radius of PSR J0030+0451 (f « 205Hz)

M “ 1.34`0.15
´0.16 p1.44`0.15

´0.14qMd , R “ 12.71`1.14
´1.19 p13.02`1.24

´1.06qkm

[Riley et al. arXiv:1912.05702, (Miller et al. arXiv:1912.05705)]

§ From X-ray bursts of accreting neutron star 4U1702-429

M “ 1.9`0.3
´0.3 Md , R “ 12.4`0.4

´0.4km

[Nättilä et al. arXiv:1709.09120]
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V-QCD without baryons (I)

Consider first the non-baryonic V-QCD action, whose solutions will serve
as background for the probe baryons

S
p0q
V´QCD “ Sglue ` S

p0q
DBI .

The gluon part is given by the IHQCD (dilaton gravity) action

Sglue “ N2
cM

3
ş

d5x
?
´g

”

R ´ 4
3
pBλq2

λ2 ` Vg pλq
ı

,

where λ ” eφ Ø TrF 2 (« g2Nc near the boundary) sources the ’t Hooft
coupling in YM theory, the dilaton potential is chosen1 to mimic QCD

Vg pλq “ 12
”

1` V1λ`
V2λ

2

1`λ{λ0
` VIRe

´λ0{λpλ{λ0q
4{3

a

logp1` λ{λ0q

ı

.

Finite T is implemented by homogeneous+isotropic black brane metric

ds2 “ e2Aprqp´f prqdt2 ` d~x2 ` f ´1prqdr2q .

1E.g. V1 and V2 are fixed by requiring the UV RG flow of the ’t Hooft coupling to
be the same as in QCD up to two-loop order.
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V-QCD without baryons (II)

The flavor part is modelled by the tachyonic DBI-action2

Sp0qDBI “ ´NfNcM
3
ş

d5xVf 0pλqe
´τ2a

´det rgab ` κpλqBaτBbτ ` wpλqFabs ,

Frt “ Φ1prq , Φp0q “ µ ,

where the tachyon τ Ø q̄q controls chiral symmetry breaking.

Several potentials: {Vg pλq,Vf 0pλq,wpλq, κpλq}, chosen to match pQCD
in UV (λÑ 0), qualitative agreement with QCD in IR (λÑ8) and
tuned to lattice QCD in the middle (λ „ Op1q).

[For details see Appendix B of Ishii, Järvinen, Nijs arXiv:1903.06169]

Different solutions:

without/with horizon Ø confined/deconfined phase
without/with tachyon Ø chirally symmetric/chirally broken phase

2Without baryons we have a vectorial flavor singlet gauge field ApL{Rq “ If Φprqdt
giving nonzero charge density and chemical potential.
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Probe baryons in V-QCD

Each baryon maps to a solitonic “instanton” configuration of non-Abelian
gauge fields in the bulk.

[Witten; Gross, Ooguri; . . . ]

Consider the full non-Abelian brane action S “ SDBI ` SCS where
[Bigazzi, Casero, Cotrone, Kiritsis, Paredes; Casero, Kiritsis, Paredes]

SDBI “ ´
1

2
M3Nc Tr

ż

d5x Vf 0pλqe
´τ 2

ˆb

´ det ApLq `
a

´ det ApRq
˙

,

A
pL{Rq
MN “ gMN ` δ

r
Mδ

r
Nκpλqτ

1prq2 ` δrtMNwpλqΦ
1prq ` wpλqF

pL{Rq
MN

gives the dynamics of the solitons.
The Cern-Simons term sources the baryon number for the solitions

SCS “
Nc

8π2

ż

Φprqe´bτ 2

dt ^
´

F pLq ^ F pLq ´ F pRq ^ F pRq ` ¨ ¨ ¨
¯

.

Non-Abelian DBI action only known to first few orders in F pL{Rq: expand

to second order on top of solution (gMN ,Φ, λ, τ) obtained from S
p0q
V´QCD .
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Homogeneous Baryon Ansatz

Set Nf “ 2 and consider the SU(2) Ansatz
[Rozali, Shieh, Van Raamsdonk, Wu]

Ai
L “ ´A

i
R “ hprqσi

Immediate consequence: baryon charge integrates to zero?

Nb9

ż

dr
d

dr

”

e´bτ 2

h3p1´ 2bτ 2q

ı

?
“ 0

However finite baryon number may can be realized by discontinuity of h
Ø smeared solitons in singular gauge.

[Ishii, Järvinen, Nijs, arXiv:1903.06169]

The free parameter b of the model is used to tune the baryon onset to its
physical value in QCD.
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Matching to Lattice QCD
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Mass dependence of the Power Spectral Density
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1.30 SLyVQCD105 10.5 1.93 2.53 3.77
1.35 SLyVQCD105 10.5 1.95 2.60 3.53 (3.90)
1.40 SLyVQCD105 10.5 2.03 2.89 3.82
1.50 SLyVQCD105 10.5 – – –
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Mass Radius Relation
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Mass Radius Relation
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Universality

[plot from Takami, Rezzolla, Baiotti arXiv:1403.5672]
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Mechanical Toy Model

[Takami, Rezzolla, Baiotti arXiv:1412.3240]
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Maximum Mass

Using a large number of viable V-QCD hybrids with phase transition gives

Mmax

MTOV
“ 1.227`0.031

´0.016 , MaxpMTOVq « 2.4Md , MaxpMmaxq « 2.9Md
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´0.04.
[Most, Papenfort, Weih, Rezzolla arXiv:2006.14601]
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GW190814

§ Binary merger of a black hole and compact secondary object:

m1 “ 23.2`1.1
´1.0 Md , m2 “ 2.59`0.08

´0.09 Md .

[The LIGO Scientific Collaboration, the Virgo Collaboration arXiv:2006.12611]

§ Secondary component falls into so-called mass-gap region:
either the heaviest NS or the lightest BH ever observed.

§ m2 is likely too large to be non-rotating, cf. V-QCD: Mmax
TOV « 2.4Md.

§ Does the V-QCD model allow it to be a spinning NS?

§ If this is the case, how fast does it need to rotate?
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