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Lattice
QCD

Perturbation
Theory

Effective Field
Theory

Gauge/Gravity
Duality

Open questions:

properties of dense
QCD matter

v

structure of
neutron stars

QCD experiments:
LHC, FAIR, NICA, ...

Astro observations:
LIGO/VIRGO, NICER, ...
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Gauge/Gravity Duality

» Mathematical relation between gauge theories and higher
dimensional gravity theories found in string theory.

» Strong-weak duality: if gauge theory is strongly coupled then gravity
theory is weakly coupled and vice versa.

» Observables in a strongly coupled field theory (hard) can be
obtained from a classical gravity calculation (easy).

Gravity Side | Gauge Theory Side
on-shell action Sgay | free energy f
black hole area A | thermal entropy Sip
surface gravity at horizon x | temperature T
metric near boundary g,%) stress tensor (TH), p, €
gauge field A, | global sym. current (J*), 1

» Gravity dual of QCD is not known. Bottom-up approach: construct
a gravity model that mimics the relevant features of QCD.
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Holographic Veneziano QCD

Gluons: Improved holographic QCD (Einstein-dilaton gravity)

2
Se = N2M3 § dx\/—g [R S YRy vg(A)]

X = e? & TrF? sources the 't Hooft coupling in YM theory
[Giirsoy, Kiritsis arXiv:0707.1324; Giirsoy, Kiritsis, Nitti arXiv:0707.1349]

Quarks: Tachyonic Dirac-Born-Infeld (DBI) action

St = —NeNeM? § dx Vig(A)e ™™ y/—det [gap + £(N) 227067 + w(N) Fap]
Fe=®(r), ®(0)=p,

tachyon 7 <> gq controls chiral symmetry breaking.
[Bigazzi et al. arXiv:0505140; Casero et al. arXiv:0702155]

Baryons: homogeneous solution of non-Abelian DBl + Cern—Simons action.
[Ishii, Jarvinen, Nijs arXiv:1903.06169]

Veneziano limit: N. — o0 and Nf — o0 with N¢/N. = x fixed
[Jarvinen, Kiritsis arXiv:1112.1261]
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Density Profile
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Merger Dynamics and Waveforms

Prompt collapse to BH with dilute matter torus.

» M=15+15Mg
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Power Spectral Density
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EoS dependence of the Power Spectral Density
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f [kHz]

EoS A1.a  fi[kHz]  h[kHz] f3[kHz]

SLyVQCD106 410  2.15 2.80  3.70 (4.06)
SLy 300 221 3.19 4.24
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Summary & Prospect

Gauge/gravity duality is used to build hybrid equations of state that
satisfy known theoretical and observational constraints.

Non-perturbative: deconfinement phase transition within one model.

Strong first order PT: V-QCD disfavours stable quark matter cores.

Slightly higher A"j;“gf/ than nuclear matter models without PT:
Mmax Mmax
= 1.2277503  vs. =1.20379%53

MTOV V-QCD MTOV nucl.
[Breu, Rezzolla arXiv:1601.06083]

Work in progress: holographic baryons at finite T by matching
hardron resonance gas + finite volume corrections.
Future: improve (e.g. finite quark masses, CSC phases, etc.) and
constrain (GWs, lattice QCD, FAIR, etc.) the V-QCD model.
Useful side product: transport coefficients
(viscosities, susceptibilities, resistivities, etc.)

[Hoyos, Jokela, Jarvinen, Subils, Tarrio arXiv:2005.14205]
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Constraints from Theory

op

» By causality the speed of sound has to satisfy: ¢ = (ae)s <1

» QCD is asymptotically free at large densities: ¢Z — 1/3.

pressure [MeV /fm®]
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[Annala, Gorda, Kurkela, Nattila, Vuorinen arXiv:1903.09121]
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Constraints from Astrophysical Observations

NS-white dwarf binary PSR J0348+-0432 (MSP J0740+6620)
Minax > 2.01750:% (2.14757 )Mo
[Antoniadis et al. arXiv:1304.6875, (Cromartie et al. arXiv:1904.06759)]
LIGO/Virgo: constrains on tidal deformability from GW170817
Ara=190%38 where Aw = 2k <c2R/(G M))5
[LIGO/Virgo: arXiv:1710.05832, arXiv:1805.11579, arXiv:1805.11581]
NICER: constrain on radius of PSR J0030+-0451 (f ~ 205Hz)
M = 1347032 (14470 )Mo, R =12.717175 (13.02715¢)km
[Riley et al. arXiv:1912.05702, (Miller et al. arXiv:1912.05705)]
From X-ray bursts of accreting neutron star 4U1702-429
M =193 Mg, R=1243km

[N&ttila et al. arXiv:1709.09120]
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V-QCD without baryons (1)

Consider first the non-baryonic V-QCD action, whose solutions will serve
as background for the probe baryons

(0) (0)
Sv_qep = Selue + Spp; -

The gluon part is given by the IHQCD (dilaton gravity) action

Sawe = NZM3§ xy/=g [R = Q5 + v, (0],

where \ = e? <> TrF? (~ g?N, near the boundary) sources the 't Hooft
coupling in YM theory, the dilaton potential is chosen® to mimic QCD

V,(\) = 12 [1 +VAA+ D% + Vire A (/o) /3 /log(1 + )\/)\0)] .
Finite T is implemented by homogeneous+isotropic black brane metric

ds? = A (—f(r)dt? + dx2 + F~1(r)dr?).

1E.g. Vi and V; are fixed by requiring the UV RG flow of the 't Hooft coupling to
be the same as in QCD up to two-loop order.
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V-QCD without baryons (lI)

The flavor part is modelled by the tachyonic DBI-action?

SO = —NeNM3 § dPxVio(A)e ™™ v/—det [gas + £(N)0aT 05T + w(X) Fas],
Fr=®'(r), ®(0)=pu,
where the tachyon 7 <> gg controls chiral symmetry breaking.

Several potentials: {Vg(A), Vro(A), w(A), k(A)}, chosen to match pQCD
in UV (A — 0), qualitative agreement with QCD in IR (A — o) and
tuned to lattice QCD in the middle (A ~ O(1)).

[For details see Appendix B of Ishii, Jarvinen, Nijs arXiv:1903.06169]

Different solutions:

without/with horizon < confined/deconfined phase
without/with tachyon <> chirally symmetric/chirally broken phase

2\Without baryons we have a vectorial flavor singlet gauge field A(L/R) = T, d(r)dt
giving nonzero charge density and chemical potential.
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Probe baryons in V-QCD

Each baryon maps to a solitonic “instanton” configuration of non-Abelian

gauge fields in the bulk. _ _
[Witten; Gross, Ooguri; .. .]

Consider the full non-Abelian brane action S = Spg| + Scs where

[Bigazzi, Casero, Cotrone, Kiritsis, Paredes; Casero, Kiritsis, Paredes]

1
Sl = —§M3NC’H‘rJd5x Vio(\)e™™ <\/—det AL 4/~ det A(R)> ,

AR — gun + S50 k(N7 ()2 + S w (V) (r) + w(N) F Ly,

gives the dynamics of the solitons.
The Cern-Simons term sources the baryon number for the solitions

Ne

5 = g2

Jcb(r)e*b#dt A (F(L) AFL — F(R) A FR) +) .

Non-Abelian DBI action only known to first few orders in F(t/R): expand
to second order on top of solution (gun, P, A, 7) obtained from 5\(/02QCD.
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Homogeneous Baryon Ansatz

Set Nf = 2 and consider the SU(2) Ansatz
[Rozali, Shieh, Van Raamsdonk, Wu]

A} = —Ag = h(r)c’
Immediate consequence: baryon charge integrates to zero?

2

d 1 _b2,3 2v| 2
Nbocfdra[e h(172b7)]—0

However finite baryon number may can be realized by discontinuity of h
< smeared solitons in singular gauge.

[Ishii, Jarvinen, Nijs, arXiv:1903.06169]

The free parameter b of the model is used to tune the baryon onset to its
physical value in QCD.
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Matching to Lattice QCD

Trace of the energy-momentum tensor

o o pooB e
2 & o N K &

A/ T, normalized to the SB limit of p/ T*
°
S

improved holographic QCD model

(e-3p) /N T*

S

[Panero arXiv:0907.3719; Jokela, Jarvinen, Remes arXiv:1809.07770]
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Mass dependence of the Power Spectral Density

2:10"2 h(f)f'"2[Hz"""2, 40Mpc]
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f [kHz]
M[Mo] oS b fi[kHz fKlkHZ  B[kHZ]
135  SLyvQCD105 105 105 260  3.53 (3.90)
140  SLYWQCD105 105 203 289 3.82
150  SLyVQCD105 105 - - -
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Mass Radius Relation
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M/M,

Mass Radius Relation
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Mass Radius Relation

stiff

3_0;’“““““‘Mmax“‘

GW190814

JO740+6620
Most et al.

Kepler

R, [km]

20

27/16



f, [kHz)

Universality
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Mechanical Toy Model

[Takami, Rezzolla, Baiotti arXiv:1412.3240]
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Maximum Mass

Using a large number of viable V-QCD hybrids with phase transition gives

M,
ﬁ = 122770030 Max(Mrov) ~ 2.4Mg, Max(Mmay) ~ 2.9Mg
1.267 N : 1
44 :
RCIN L o HLPSs +
1.24f , Aggg;A: . ] V-QCD
A | n i
A softi iy e * ¢
g A a M ', 'l" nterm; :’Qfstiff ° \A]PSC*D
= < 1 ] —
= 129 L PR ]
% o Oo" miee e Lo o SLy +
= RAPCE SR V-QCD
************ HLPSi +
1.20p i i 1 e
0 ! ! V-QCD
! 3 V APR , IUF +
1.18F | | 1 V-QCD
2.0 2.1 2.2 2.3 2.4
Mrov/M

(red band) Upper bound from GRB 170817A: Mrov /Mg < 2.161311.
[Rezzolla, Most, Weih arXiv:1711.00314]
(blue band) Lower bound assuming NS in GW190814: Mtov /Mg > 2.08fgjgj.
[Most, Papenfort, Weih, Rezzolla arXiv:2006.14601]
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GW190814

Binary merger of a black hole and compact secondary object:
m =232 Mg, my=259"0%8 My .
[The LIGO Scientific Collaboration, the Virgo Collaboration arXiv:2006.12611]

Secondary component falls into so-called mass-gap region:
either the heaviest NS or the lightest BH ever observed.

my is likely too large to be non-rotating, cf. V-QCD: MT5y ~ 2.4Mg.
Does the V-QCD model allow it to be a spinning NS?

If this is the case, how fast does it need to rotate?
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