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Problem 1: The Christoffel Connection [1+1+1+1+1 points]

To construct a covariant generalization of partial derivative operators on curved spaces, it is necessary to

introduce a connection. A connection is a linear map that ensures the derivative of tensors transforms

consistently with the tensorial transformation law. In this exercise, you will derive the explicit form of the

Christoffel connection used in General Relativity

Γαµν =
1

2
gαβ (∂µgβν + ∂νgµβ − ∂βgµν) . (1)

(1) Show that the difference between two generic connections Γαµν , Γ̃
α
µν is a tensor. Based on this show

that the anti-symmetrized sum of two connections is a new tensor Tαµν = Γ
α
[µν]. What is the name of

this tensor?

(2) Now assume the torsion-free (Tαµν = 0) and metric compatibility (∇αgµν = 0) conditions to derive
the explicit expression (1) for the Christoffel symbol in terms of the metric and its partial derivatives.

(3) Compute all non-vanishing Christoffel symbol components for 2D flatspace in polar coordinates

ds2 = dr2 + r2dθ2 .

(4) Compute all non-vanishing Christoffel symbol components of a two-sphere with radius R in spherical

coordinates

ds2 = R2dθ2 + R2 sin(θ)2dφ2 .

(5) As you can see from (3) and (4), its not so easy to distinguish flat from curved spaces by inspecting

the Christoffel symbols. In fact, you should realize that this is actually impossible. Can you explain

why?

Problem 2: Geodesic deviation equation [1+1+1 points]

In Euclidean geometry, the parallel postulate tells us that straight lines which start out parallel will remain

parallel forever. On a curved manifold, however, initially parallel geodesics can converge or diverge. In this

exercise you will derive the geodesic deviation equation, which links the Riemann curvature tensor to the

relative acceleration of neighboring geodesics—the “straightest” possible paths in a curved space.

(1) Let {γs(t)}s∈R be a on-parameter family of geodesics, where t is the affine parameter along each curve
and s labels different geodesics. Together they sweep out a two-dimensional surface xµ = xµ(s, t).

Define the tangent T µ and deviation vector fields Sµ of this surface.

(2) Use T µ and Sµ to express the relative velocity vµ and acceleration aµ of nearby geodesics.

(3) Finally, evaluate the acceleration and show that it is related to the Riemann tensor by what is known

as the geodesic deviation equation

aµ = RµνρσT
νT ρSσ . (2)
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Problem 3: The Einstein Equation [1+1+1+1 points]

In General Relativity, gravity is not a force in the usual sense but the manifestation of spacetime curvature.

The dynamics of the metric tensor gµν are governed by Einstein’s field equations

Rµν −
1

2
Rgµν = 8πGNTµν , (3)

which relate geometry (through the Ricci tensor Rµν and scalar R) to matter (via the stress–energy tensor

Tµν). In this exercise you will:

(1) Derive the vacuum (Tµν = 0) Einstein equations from the variational principle of the Einstein-Hilbert

action

SEH[g] =
1

16πGN

∫
dx4
√
−gR . (4)

(2) By adding a generic matter term SM to the Einstein Hilbert action, show how the energy momentum

tensor arises in the full Einstein equations (3).

(3) Use the differential Bianchi identity for the Riemann tensor

∇[λRβγ]µν = 0 , (5)

to show that the covariant derivative of the Einstein tensor, i.e., the left hand side of (3) is zero.

What does this imply for Tµν?

(4) Using the result of (3) and metric compatibility, show that one can sneak in a cosmological constant

term to the field equations.
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