

Exercise Sheet 2

Advanced General Relativity

Lecturer Dr. Christian Ecker
 Tutors MSc. Alexander Lasar, MSc. Kenneth Miler
 Hand-in date 13. May 2025

Problem 4: Energy Conditions

[1+1+1 points]

Any spacetime metric can be made to satisfy Einstein's equations by choosing a suitable stress-energy tensor $T_{\mu\nu}$. However, many geometries require "exotic" forms of $T_{\mu\nu}$ that violate standard physical criteria. A common way to test physical reasonableness is via the local energy conditions summarized in the Table 1. Consider the static, spherically symmetric metric

$$ds^2 = -dt^2 + d\ell^2 + r(\ell)^2 d\Omega^2, \quad (1)$$

where i) $r(\ell)$ has a global minimum $r_0 > 0$ at $\ell = 0$ and ii) $r(\ell) \rightarrow |\ell|$ as $\ell \rightarrow \pm\infty$, so that each end is asymptotically flat.

1. Show that this geometry describes a traversable wormhole connecting two asymptotically flat regions, with a throat of radius r_0 .
2. Compute the stress-energy tensor $T_{\mu\nu}$ for which this metric satisfies the Einstein equations.
3. Determine which of the energy conditions in Table 1 are violated at the throat $\ell = 0$.

Energy Condition	Definition	Interpretation
Null (NEC)	$T_{\mu\nu} k^\mu k^\nu \geq 0 \quad \forall \text{ null } k^\mu$	Energy density seen by any light-like observer is non-negative.
Weak (WEC)	$T_{\mu\nu} u^\mu u^\nu \geq 0 \quad \forall \text{ timelike } u^\mu$	Energy density measured by any timelike observer is non-negative (implies NEC).
Strong (SEC)	$(T_{\mu\nu} - \frac{1}{2} T g_{\mu\nu}) u^\mu u^\nu \geq 0 \quad \forall \text{ timelike } u^\mu$	Matter focuses timelike geodesics (gravity is, on average, attractive).
Dominant (DEC)	$T_{\mu\nu} u^\mu u^\nu \geq 0, \quad T^\mu_\nu u^\nu \text{ non-spacelike}$	Energy flow is causal and the local energy density dominates pressures.

Table 1: Pointwise energy conditions in General Relativity in terms of null (k^μ) and timelike vectors (u^μ).

Problem 5: Expansion, Shear and Rotation in 2D

[1+1+1 points]

The goal of this exercise is to build intuition for the concepts of expansion, shear, and rotation in a simple two-dimensional medium, such as a rubber band. For clarity and simplicity, we adopt a purely kinematic perspective. In this framework, a sufficiently small displacement ξ^a from a reference point evolves according to

$$\frac{d\xi^a}{dt} = B_b^a(t)\xi^b + \mathcal{O}(\xi^2), \quad (2)$$

where $B_b^a(t)$ is a time-dependent tensor characterizing the local deformation. The time dependence of this tensor is determined by the medium's dynamics which for short time intervals $\Delta t = t_1 - t_0$ expands as

$$\xi^a(t_1) = \xi^a(t_0) + \Delta\xi^a(t_0), \quad (3)$$

where

$$\Delta\xi^a = B_b^a(t_0)\xi^b(t_0)\Delta t + \mathcal{O}(\Delta t^2). \quad (4)$$

In the following, you are asked to examine how different choices of B_b^a distort a circle of radius r_0 , initially described by

$$\xi^a(t_0) = r_0(\cos\phi, \sin\phi). \quad (5)$$

1. The uniform expansion of the medium can be parametrized as

$$B^a_b = \begin{pmatrix} \frac{1}{2}\theta & 0 \\ 0 & \frac{1}{2}\theta \end{pmatrix}, \quad B^a_a = \theta. \quad (6)$$

Compute the corresponding expression for the deformation $\Delta\xi^a$, sketch how it distorts an initially circular region, and relate the expansion parameter θ to the change in area, $\Delta A = A_1 - A_0$.

2. A shear deformation of the medium can be parametrized by the symmetric and trace free matrix

$$B^a_b = \begin{pmatrix} \sigma_+ & \sigma_x \\ \sigma_x & -\sigma_+ \end{pmatrix}, \quad B^a_a = 0. \quad (7)$$

Compute the corresponding expression for the deformation $\Delta\xi^a$, sketch how it distorts an initially circular region when either setting the shear parameter $\sigma_x = 0$ or $\sigma_+ = 0$. Does the area of the figure change under such deformations?

3. Next, consider the antisymmetric matrix representing a rotation:

$$B^a_b = \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix}, \quad B^a_a = 0. \quad (8)$$

Compute the corresponding expression for the deformation $\Delta\xi^a$, sketch how it distorts an initially circular region, and determine whether the area of the figure changes under such a deformation.

Problem 6: Raychaudhuri's Equation

[1+1+1+1 points]

In this exercise you will derive Raychaudhuri's equation, which governs the evolution of the expansion of a congruence of geodesics. Specializing to timelike congruences, the equation takes the form

$$\frac{d\theta}{d\tau} = -\frac{1}{3}\theta^2 - \sigma^{\alpha\beta}\sigma_{\alpha\beta} + \omega^{\alpha\beta}\omega_{\alpha\beta} - R_{\alpha\beta}u^\alpha u^\beta, \quad (9)$$

where θ , $\sigma_{\alpha\beta}$, $\omega_{\alpha\beta}$, and $R_{\alpha\beta}$ are the expansion scalar, the shear, rotation and Ricci tensor respectively and u^α a timelike tangent of the congruence.

1. Start by decomposing the vector field $B_{\alpha\beta}$ into trace, symmetric-tracefree, and antisymmetric parts

$$B_{\alpha\beta} = \frac{1}{3}\theta h_{\alpha\beta} + \sigma_{\alpha\beta} + \omega_{\alpha\beta}, \quad (10)$$

and compute $B^{\alpha\beta}B_{\alpha\beta}$.

2. Derive the evolution equation for $B_{\alpha\beta}$ by evaluating $u^\mu \nabla_\mu B_{\alpha\beta}$ in terms of the Riemann tensor.
3. Take the trace to obtain the evolution equation for θ and combine it with your previously derived expressions to obtain Raychaudhuri's equation (9).
4. Finally, assume your congruence to be hypersurface orthogonal, i.e., $\omega_{ab} = 0$ by Frobenius theorem, and assume SEC to obtain an inequality from Raychaudhuri's equation. What does this inequality imply for the expansion of an initially diverging/converging congruence?