

Exercise Sheet 10

Advanced General Relativity

Lecturer Dr. Christian Ecker
 Tutors MSc. Alexander Lasar, MSc. Kenneth Miler
 Hand-in date 8. July 2025

Problem 22: 3+1 Split of the Riemann Tensor [1+1+1+1+1 points]

In the $3+1$ decomposition of spacetime, one splits the full 4-dimensional geometry into a family of spatial hypersurfaces Σ_t labeled by a time parameter t , with induced metric $\gamma_{\mu\nu}$ and future-directed unit normal vector n^μ . This formalism is central to the initial value formulation of general relativity, where geometric quantities on Σ_t and their evolution fully determine spacetime dynamics.

In this problem, you will derive a series of geometric identities that express the spacetime Riemann tensor in terms of intrinsic and extrinsic curvature quantities on Σ_t — the so-called Gauss–Codazzi–Mainardi and Ricci equations. These relations play a key role in both the mathematical foundations and numerical implementation of general relativity.

1. Show that the Lie derivative of the induced metric $\gamma_{\mu\nu}$ along the unit normal vector n^μ is related to the extrinsic curvature $K_{\mu\nu}$ via

$$\mathcal{L}_n \gamma_{\mu\nu} = -2K_{\mu\nu}. \quad (1)$$

2. Recall that the lapse function α relates the coordinate time to proper time between hypersurfaces. Show that the acceleration $a_\nu \equiv n^\mu \nabla_\mu n_\nu$ satisfies

$$a_\nu = D_\nu \ln \alpha, \quad (2)$$

where D_ν is the covariant derivative associated with the spatial metric $\gamma_{\mu\nu}$.

3. Derive the Gauss–Codazzi equation, which gives the fully spatial projection of the Riemann tensor:

$$\gamma^\mu{}_\alpha \gamma^\nu{}_\beta \gamma^\rho{}_\delta \gamma^\sigma{}_\lambda R_{\mu\nu\rho\sigma} = {}^{(3)}R_{\alpha\beta\delta\lambda} + K_{\alpha\delta} K_{\beta\lambda} - K_{\alpha\lambda} K_{\beta\delta}, \quad (3)$$

where ${}^{(3)}R_{\alpha\beta\delta\lambda}$ is the Riemann tensor intrinsic to Σ_t .

4. Derive the Codazzi–Mainardi equation, which relates the mixed projection of the Riemann tensor to the derivative of the extrinsic curvature:

$$\gamma^\rho{}_\beta \gamma^\mu{}_\alpha \gamma^\nu{}_\lambda n^\sigma R_{\rho\mu\nu\sigma} = D_\alpha K_{\beta\lambda} - D_\beta K_{\alpha\lambda}. \quad (4)$$

5. Derive the Ricci equation, involving the double projection of the Riemann tensor along the normal direction:

$$\gamma^\alpha{}_\mu \gamma^\beta{}_\nu n^\delta n^\lambda R_{\alpha\beta\delta\lambda} = \mathcal{L}_n K_{\mu\nu} - \frac{1}{\alpha} D_\mu D_\nu \alpha + K^\lambda{}_\nu K_{\mu\lambda}. \quad (5)$$