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Last but not least, I want to thank myself for persevering, pushing through, not
losing focus and the unmeasureable amount of personal growth I will always asso-
ciate with this time.

2



3

1 Introduction and Astrophysical Background

1.1 Neutron Stars as a Tool to Study Dense Matter

Neutron Stars are the densest objects in the universe that are not black holes. Binary
Neutron Star mergers are significant sources of gravitational waves [1] and do hence
serve as unique laboratories to study strongly interacting matter at high densities.

The existence of Neutron Stars was first proposed in 1933 by Walter Baade and Fritz
Zwicky, which was only two years after the discovery of the neutron by James Chad-
wick. Because the light emitted by Neutron Stars was held to be too faint compared
to that of usual stars, their study did not yield much progress in the decades after
their proposal. This changed in 1967, when Franco Pacini proposed that spinning
Neutron Stars would obtain strong magnetic fields, which would lead to the emission
of electromagnetic waves. It took only two years until the discovery of this exact
phenomenon, when Jocelyn Bell Burnell and Anthony Hewish detected periodic ra-
dio pulses from PSR B1919+21, giving also rise to the term ”Pulsar” for rotating
Neutron Stars which periodically emit light pulses. The next breakthrough discovery
was not long in coming, when in 1974 Joseph Taylor and Russell Hulse discovered
PSR B1913+16, the first binary pulsar system of two Neutron Stars orbiting around
their common center of mass. The significance of this discovery is much bigger how-
ever: Albert Einstein predicted in his Theory of General Relativity, that accelerated
bodies in close orbits lose kinetic energy due to the emission of gravitational waves,
thus leading to a continuous decay of their orbit and ultimately to their collision.
The orbital decay detected from PSR B1913+16 precisely matched the prediction of
general relativity and thus served as the first indirect measurement of gravitational
waves. The first direct measurement of gravitational waves produced by two collid-
ing Neutron Stars was just done in August 2017 by the LIGO/Virgo collaboration,
opening the possibility to learn about the dense matter present in Neutron Stars
through the gravitational wave signals.

When a star with a mass greater than 8M� leaves the main sequence and starts to
produce iron, the nuclear fuel in the core will eventually deplete. Since iron has the
highest binding energy-per nucleon, no net-energy would be generated when fusing it
leading to a growing iron core inside the dying star which is under huge gravitational
pressure. At this point, a core-collapse is only prevented by the degeneracy pressure
of its constituent electrons. However, since nuclear fusion still undergoes in the outer
layers of the star, further mass accretion onto the core causes it to ultimately exceed
the Chandrasekhar limit of 1.4M� [2] and thus triggers a type II supernova [3].
Because the collapsing core reaches densities several times that of nuclear saturation
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1.1 Neutron Stars as a Tool to Study Dense Matter 4

density, protons are turned into neutrons through electron capture which become
degenerate. During this process, neutrinos are also generated. Because neutrinos
sparsely interact with normal matter, they are able to escape the core and immensely
cool it by carrying away massive amounts of energy. By doing this, these ”thermal
neutrinos” enable the formation of a stable Neutron Star. The newly born Neutron
Star is now kept safe from gravitational collapse by a patchwork of mechanism.
Being partially supported by neutron degeneracy pressure, that by itself could only
support Neutron Stars up to 0.75M� [4]. In order to keep the core of heavier Neutron
Stars from collapsing, interactions between neutrons provided by the strong nuclear
force are required. In fact, the interaction terms between the nucleons completely
dominate the Equation of State (EoS) of strongly interacting matter.

The outermost structure of a Neutron Star is its ”atmosphere”, which consists of a
plasma of hydrogen and helium nuclei and whose size extends to barely a meter, with
most of the plasma being confined to a thin 10cm shell. The latest evidence points to
matter at the surface of the Neutron Star being confined to a solid lattice of ordinary
atomic nuclei which allows free electrons to ”flow” through its gaps. Beneath it, we
find the outer crust of the Neutron Star, being made up of a degenerate Fermi Gas of
electrons and atomic nuclei - mostly iron being left from before the supernova. With
increasing density, electrons and protons undergo electron capture processes and
thus nuclei become increasingly neutron-rich. At some point, nuclei are so neutron-
rich that the neutrons escape the nuclei, resulting in a free neutron-gas filling the
ever decreasing gap between nuclei. This effect is known as ”neutron-drip”. Since
neutrons are fermions, at these densities neutron-degeneracy pressure plays the main
role in preventing the collapse of the Neutron Star. Arriving at the core, due to the
extreme densities nuclei become so close that nucleons are simultaneously subjected
to attraction due to the strong nuclear force, and repulsion due to the coulomb force.
This nuclear tug-of-war leads to the formation of exotic structures usually refered to
as nuclear pasta. Lastly, the state of matter present in the inner core is still subject
of scientific debate. Different models have been put forth, like the presence of quark
matter inside the core [5] or the existence of hyperons, particles that - like nucleons
- consist of three quarks but include strange quarks. This still present uncertainty is
rooted in our lack of knowledge of the EoS at high densities and forces us to come
up with different methods to describe the EoS in the denser regions.

Typical Neutron Star radii range from 10 − 13 km [6, 7], while the mass usually re-
sides between 1− 2M� [8,9]. A broad discussion about Neutron Stars can be found
in [10]. Since the immense densities that are realized inside Neutron Stars cannot
be mimicked or reproduced in artificial laboratories, the study of Neutron Stars pro-
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1.1 Neutron Stars as a Tool to Study Dense Matter 5

vides unique information about the Equation of State of strongly interacting matter,
about which our knowledge is still limited. The Equation of State is a relation be-
tween the energy density and the pressure. In general, it also depends on other
properties like temperature, electron fraction, magnetic and electric fields. However,
we can approximate Neutron Stars as cold zero-temperature objects since their tem-
perature is low relative to temperatures usually present in high-energy astrophysics.
Right after formation through a supernova, a Neutron Star can have sizeable tem-
peratures ∼10MeV. As already explained, this thermal energy gets radiated away
quickly through neutrinos to temperatures of order keV. Temperatures of this order
of magnitude are regarded cool in Neutron Stars, because the relevant microscopic
scale is the deconfinement scale in QCD which is about 150MeV. The Neutron Stars
we usually observe are typically very old which means they are already cool [11].
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Figure 1: The EoS at intermediate densities is unknown but constrained by the
nuclear matter and pQCD EoS.

Ideally, the Equation of State can be extracted from the underlying microscopic
theory. When the density is below nuclear saturation density, Chiral Effective Field-
Theory (CET) can be used to determine the nuclear matter Equation of State within
relatively good accuracy, where the latter stems from uncertainties of the low-energy
coupling constants of CET [12]. For very high densities, the theoretical framework of
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perturbative QCD (pQCD) can be used to derive the Equation of State from micro-
scopic calculations [13]. These calculations apply at densities higher than 40ns, much
higher than densities that are physically realized inside Neutron Stars and are also
afflicted by theoretical uncertainties due to the uncertainty of the renormalization
scale parameter of pQCD. Yet, both the pQCD and CET part of the Equation of
State play an important role in constraining the overall shape of the Neutron Star
Equation of State, which is still unknown in the intermediate densities inbetween the
CET and pQCD regimes as is depicted in Fig. 1.
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Figure 2: A showcase of the three main classes of c2
s profiles using the analytical

parametrizations of [14] and [15]. All models converge to 1/3 from below in the
high density limit.

The lack of first-principle tools to determine the EoS at densities (1.1-40)ns forces
us to come up with models to parametrize the Equation of State in these regimes.
During the last years, several models have been put forth. In this thesis, we will use
the speed-of-sound-interpolation method, which has been first introduced by Annala
et. al in 2019 [5] and which exploits the relationship between the Equation of State
and the speed of sound given by dp

de
c2 = c2

s. This shows, that any Equation of State
p(e) corresponds to a speed of sound profile cs(e). According to pQCD calculations,
the speed of sound has to converge to cs = c√

3
- from now on referred to as the con-

formal value - in the asymptotic high-density limit from below [16]. The behaviour
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of the speed of sound in the intermediate densities is unknown however, e.g. if it
temporarily exceeds the conformal value and thus exhibits a local maximum or if
instead it is monotonic. This open debate is depicted in Fig. 2, showing the three
most logical sets one can decompose c2

s models into. Specifically, monotonic and
subconformal c2

s < 1/3 (I), non-monotonic and subconformal c2
s < 1/3 (II), non-

monotonic and sub-luminal c2
s ≤ 1. Several arguments have been put forth that

suggest a universal bound c2
s < 1/3 [17, 18], favouring scenarios (I) and (II). How-

ever, a number of counter examples to this bound are known in QCD at large isospin
density [19], two-color QCD [20], quarkyonic matter [21–23], models for high-density
QCD [24, 25] and models based on the gauge/ravity duality [26–28]. All of these
examples favour scenario (III). Finally, astrophysical measurements of neutron-star
masses & 2M� [29–31],and theoretical predictions on the maximum gravitational
mass [32–34] suggest stiff EoSs with c2

s & 1/3 at densities & n0, again favouring
scenario (III). Due to the correspondence between cs(e) and p(e), a better under-
standing about the behaviour of the speed of sound ultimately leads to a better
understanding of the EoS.

The goal of this thesis is to generate a large set of EoSs that by construction satisfy
the known theoretical boundary conditions, apply observational constraints onto
them and analyze the solutions that satisfy these constraints. We especially pay
focus on the properties of the viable speed of sound profiles in terms of monotonicity.
For densities below 1.1ns we will use a monotrope (See Chapter 2.1) that is fitted
inbetween the ”soft” and ”stiff” CET EoS of [12], shown in blue in Fig. 1. For
densities & 40ns corresponding to baryon chemical potentials ≥ 2.6 GeV we use the
analytical parametrization of the pQCD EoS by [13], depicted as the green band in
Fig. 1. Since all cs(e) profiles satisfy 0 ≤ c2

s = dp
de
c2 ≤ 1 by construction, it is ensured

that all EoSs are causal and thermodyamically stable, which are the only theoretical
constraints for the intermediate densities.

Furthermore, we will discard any EoS that is unable to support 2M� stars as this is
the lower uncertainty bound of the mass measurement of PSR J0740+6620 with a
mass of 2.08±0.07M� (68% credible interval) which is the highest Neutron Star mass
ever measured [35]. This will result in very ”stiff” EoSs that exhibit a rapidly rising cs.
Lastly, all EoSs must satisfy the LIGO/Virgo 90% credible interval for the tidal
deformability Λ due to the GW170817 event [36] which we check by imposing the
binary-tidal-deformability constraint Λ̃ < 720 corresponding to the low spin priors
|χ|< 0.05 of [1]. This constraint will result in the exclusion of stellar solutions with
high radii, because Λ ∝ R5
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1.2 Mass and Radius of Static Neutron Stars 8

1.2 Mass and Radius of Static Neutron Stars

The theoretical backbone of this thesis is the computation of the macroscopic prop-
erties of Neutron Stars, i.e. their masses and radii. To accomplish this, we have to
solve the Einstein field equations (The convention G = c = 1 will be used throughout
this thesis afterwards)

Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (1)

by assuming that the Neutron Star is static, spherically symmetric, isotropic, non-
rotating and that its matter can be described as an ideal fluid in hydrostatic equi-
librium with a non-trivial Energy-Momentum tensor. Using these assumptions, the
Einstein field equations simplify into the so called ”Tolman-Oppenheimer-Volkoff”
(TOV) equations which can be derived as follows:

The metric tensor of a spherically symmetric, static fluid is given by

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dθ2 + r2sin2(θ)dφ2 . (2)

Due to Birkhoffs theorem which states that a spherically symmetric solution of the
vacuum Einstein field equations is uniquely described by the Schwarzschild metric,
we construct (2) so that it is continuously matched to the Schwarzschild metric at
the surface of the star. Taking isotropy, time-independence and spherical symmetry
into account, the stress energy-tensor can be expressed as

T µν = diag(−e(r), p(r), p(r), p(r)) , (3)

where e(r) is the energy density and p(r) the pressure. Contracting the energy-
momentum tensor and computing the Einstein field equations for the given metric
yields

1

r2
e2(α−β)[2β′r − (1− e2β)] = 8πe2αe(r) , (4)

2

r
α′ +

1

r2
(1− e2β) = 8πe2βp(r) , (5)

where the prime denotes partial radial derivatives. Defining the gravitational mass

m(r) = 4π

∫ r

0

e(r′)r′2 dr′ , (6)

which is the mass contained inside a sphere of radius r measured by a distant observer,
and integrating (4) one can obtain an expression for the first metric function β

e−2β(r) = 1− 2m(r)

r
. (7)

8



1.2 Mass and Radius of Static Neutron Stars 9

Plugging (7) into (5), and rearranging for α′ will yield a constraint on the second
metric potential

dα(r)

dr
=

4πpr3 +m

r(r − 2m)
. (8)

We can arrive at a second equation by exploiting the fact that the covariant derivative
of the energy-momentum-tensor vanishes, which is a consequence of the Bianchi-
Identities in General Relativity

∇µT
µ
ν = 0 −→ ∇µT

µ
r = 0 , (9)

where only the radial covariant index remains due to the staticity (∂tρ = ∂tP = 0)
and isotropy (∂θP = ∂φP = 0) of the problem. Computing (9) and combining with
(8) we arrive at the final equations

dα(r)

dr
= − 1

p+ e

dp

dr
, (10)

dp

dr
= −(p+ e)(4πpr3 +m)

r(r − 2m)
, (11)

dm

dr
= 4πe(r)r2 , (12)

which are called the TOV equations. In order to solve them one needs to provide
a relation between the pressure and the energy density, given by an Equation of
State (EoS). For a given Equation of State a family of solutions can be computed
by varying the central pressure pc which is present in the core of the star and serves
as a free parameter. The TOV equations will be radially integrated outward until
the pressure becomes zero. This way, the radius of the Neutron Star is defined as
p(R) = 0. In general, equations (10-12) have to be solved numerically which will be
explained in detail in Appendix B. The mass of the star can now be computed by

M = m(R) = 4π

∫ R

0

e(r′)r′2 dr′. (13)

Lastly, one could also calculate the baryonic mass Mb which is the total rest mass of
the object, neglecting the negative gravitational binding energy

Mb = 4π

∫ R

0

e(r′)r′2√
1− 2m(r′)

r′

dr′ . (14)

9



1.2 Mass and Radius of Static Neutron Stars 10

In this thesis, ”mass” will always refer to the gravitational mass given by (13). It
is worth mentioning that the TOV equations do permit an analytical solution in
the case of constant energy density. Although unrealistic, this case still provides
a noteable point which becomes visible when looking at the central pressure pc =
p(r = 0) with respect to the mass and radius of a star in this simplified model

pc =
3M

4πR3

 1−
√

1− 2M
R

3
√

1− 2M
R
− 1

 . (15)

Equation (15) shows not only that the central pressure inside a star depends only
on its mass and radius, but also that infinite central pressure would be needed to
support a star whose compactness C = M/R approaches 4/9. In a theorem called
Buchdals limit [37], it is shown that this critical compactness is even valid for any
type of EoSs, showing that Ccrit = 4/9 poses a constraint on any relativistic and
compact star. In practice, the compactness for realistic EoS models ranges between
0.1 and 0.2 [38].
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2 Constructing Viable Neutron Star EoS Models

2.1 The Piecewise Polytrope Model

The piecewise polytrope model (PP model) is the most common way to parametrize
the Neutron Star EoS. Because we will use this model to describe the CET EoS,
an introduction of this method is called for. Already discussed thoroughly in [38]
and [39], the pressure and rest mass density are related by a simple power law

p(ρ) = KρΓ , (16)

which is called a monotrope. K is the polytropic constant and Γ is called the adiabatic
index. Usually, multiple monotropes are continuosly matched together (polytropes)
while varying the remaining free parameters to generate a family of EoSs. In order
to obtain the energy density, we consider the first law of thermodynamics

d

(
e

ρ

)
=

p

ρ2
dρ , (17)

which can be integrated to obtain

e(ρ) = ρ+
KρΓ

Γ− 1
, (18)

where the integration constant has been chosen to ensure that lim
ρ→0

e
ρ

= 1. One can

now construct piecewise polytropes by ensuring that (17) is satisfied in each segment
ρi < ρ < ρi+1, which is taken care of by the following parametrizations of pressure
and energy density

pi(ρ) = Kiρ
Γi , (19)

ei(ρ) = (1 + ai)ρ+
Ki

Γi − 1
ρΓi . (20)

Note how (20) only differs from (18) by the integration constant ai which takes care of
the continuous matching of the energy density. Imposing the continouity of pressure
and energy density through pi(ρi) = pi+1(ρi) and ei(ρi) = ei+1(ρi) yields

Kiρ
Γi
i = Ki+1ρ

Γi+1

i , (21)

ai+1 =
e(ρi)

ρi
− 1− Ki+1

Γi+1 − 1
ρ

Γi+1−1
i , (22)

11



2.1 The Piecewise Polytrope Model 12

where a0 = 0 to ensure the low density limit previously discussed. Alternatively one
can also directly express the pressure with respect to the energy density

p(e) = κeγ . (23)

Here, γ is known as the polytropic index. An advantage of this formulation is that
it can easily describe a first order phase transition by setting γ = 0. In this case, the
energy density would stay constant even for increasing pressure. Using the rather
interesting thermodynamic relation

Γ = γ + c2
s , (24)

it is easy to check that (16), (23) and (24) yield

Γ =
ρ

p

∂p

∂ρ
=
e+ p

p
c2
s , (25)

γ =
e

p

∂p

∂e
=
e

p
c2
s . (26)

Another useful relation can be obtained by considering again the first law of ther-
modynamics

dE = TdS − pdV + µBdN , (27)

where E is the energy, S the entropy and N the baryon number. Transforming these
variables into the form of densites like follows

e =
E

V
s =

S

M0

ρ =
M0

V
, (28)

and now using the conservation of rest mass dM0 = 0 out of which dV
V

= −dρ
ρ

follows,

we can rewrite (27) as

de = Tρds+

(
p+ e

n

)
dnB . (29)

This now finally yields the very important thermodynamic relation

µB =

(
∂e

∂nB

)
S,V

=
p+ e

n
, (30)

whose validity is not restricted to the use of polytropes and which will be thoroughly
used in this thesis too.

12



2.2 The Speed of Sound Interpolation Method 13

2.2 The Speed of Sound Interpolation Method

While the piecewise polytropic approach is quite straightforward, it is not free of
disadvantages. For example, it does not provide enough free parameters to ensure
continouity of the speed of sound. This has motivated the authors of [5] to develop
a method that builds the EoS starting from a parametrization of the speed of sound.
This allows us to directly control the behaviour of the speed of sound, which is
indispensable for the questions we are pursuing in this work - concretely, investigat-
ing its properties for the subset of solutions that pass theoretical and observational
constraints.

We start by parametrizing the squared speed of sound as a linear interpolation be-
tween Np points of (c2

s,i, µi)
Np−1
0 where i ∈ [0, Np−1], c2

s,i ∈ [0, c2
s,max], c2

s,max ∈ [0, 1]
and µi ∈ [µCET , 2.6 GeV]. The matching chemical potential µCET is different for
each EoS candidate and given by the CET EoS described in Chapter 2.3. By sam-
pling first the maximum speed of sound, we avoid the fact that subconformal and
thus also monotonic solutions are surpressed when Np � 1. This happens, because
for subconformal solutions to be generated all speed of sound interpolants would
have to end up < 1/3 simultaneously.

c2
s(µB) =

(µi+1 − µB) c2
s,i + (µB − µi) c2

s,i+1

µi+1 − µi
µi ≤ µB ≤ µi+1 (31)

1.0 1.5 2.0 2.5
µB [GeV ]

0.0

0.2

0.4

0.6

0.8

1.0

c2 s
/c

2

3 segments

4 segments

Figure 3: Two examplatory c2
s profiles using (31) for 3 and 4 segments. The 3 seg-

ment profile is subconformal and both are non-monotonic.
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2.2 The Speed of Sound Interpolation Method 14

We now seek expressions for the baryon number density nB(µ) and the pressure p(µ).
For that, we first differentiate (30) and use (25) to show

dµB
dnB

=
µB
nB

c2
s . (32)

This differential equation can be easily solved for the baryon density through

nB(µB) = nCET exp

[∫ µB

µCET

dµ′

µ′c2
s(µ
′)

]
, (33)

which can be evaluated analytically to yield the baryon density in the i-th segment

nB(µB) = nCET

i−1∏
k=0

(
µkc

2
s,k+1

µk+1c2
s,k

)ak,0 [
µi
µB

(µi+1 − µB)c2
s,i + (µB − µi)c2

s,i+1

(µi+1 − µi)c2
s,i

]ai,0
, (34)

where the product sign will be ignored for i = 0 and the exponents are defined as

ai,j :=
µi+1 − µi

(c2
s,i+1 + j)µi − (c2

s,i + j)µi+1

. (35)

1.0 1.5 2.0 2.5
µB [GeV ]

0

10

20

30

40

n
B

[n
0
]

3 segments

4 segments

Figure 4: The resulting baryon densities when plugging the two c2
s profiles from

Fig. 3 into (34)
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2.2 The Speed of Sound Interpolation Method 15

Note how (32) ensures that by construction the baryon density is not only contin-
uous but also smooth at the transition points - independent of the choice of the
interpolation points which can be nicely seen in Fig. 4. The density at the CET
matching point is given by nCET which we set as 1.1n0. Differentiating (30) again
we can arrive at the differential equation

dp

dµB
= nB(µB) , (36)

which can be easily integrated to yield the pressure

p(µB) = pCET +

∫ µB

µCET

dµ′nB(µ′) , (37)

where pCET is the pressure at the CET matching point. Although more complicated,
this integral still yields an analytical solution for the pressure

p(µB) = pCET +
i−1∑
k=0

ak,1

[
ck µk n(µk) 2F1

(
1, 2,

2 + ak,1
1 + ak,1

;
(ck − ck+1)µk
ckµk+1 − ck+1µk

)

− ck+1 µk+1 n(µk+1) 2F1

(
1, 2,

2 + ak,1
1 + ak,1

;
(ck − ck+1)µk+1

ckµk+1 − ck+1µk

)]

+
µn(µ) (ci+1(µi − µ) + ci(µ− µi+1)) 2F1

(
1, 2,

2+ai,1
1+ai,1

; (ci−ci+1)µ
ciµi+1−ci+1µi

)
(1 + ci+1)µi − (ci + 1)µi+1

+ ai,0 ci µi n(µi) 2F1

(
1, 2,

2 + ai,1
1 + ai,1

;
(ci − ci+1)µi
ciµi+1 − ci+1µi

)
. (38)

2F1 denotes the hypergeometric function which in general returns complex values
and can be evaluated using series or integral representations [40]. Note how in (38),
only differences of hypergeometric functions occur which leads to the cancelling of
the imaginary parts and so in practice, the pressure will only obtain real values.
Finally, using (30) we can now numerically express the actual Equation of State as
the pressure with respect to the energy density as displayed in Fig. 6
Since the baryon density (34) is continuous and smooth at the transition points,
(36) ensures that this by construction is also true for the pressure. The integration
constants nCET and pCET ensure that both thermodynamic quantities are matched
to the CET band. It is not guaranteed however, that the pressure, baryon density
and c2

s satisfy the correct pQCD boundary conditions at µB = 2.6 GeV which only

15



2.2 The Speed of Sound Interpolation Method 16

happens for specific choices of the interpolants (31). In order to ensure that our
EoSs satisfy the pQCD boundary conditions, we agnostically and uniformly sample
all interpolants as explained in the beginning of this chapter, except for the first and
final ones and keep them if they yield the correct pQCD boundary conditions by
chance. The pQCD boundary conditions are discussed in Chapter 2.4.
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1000
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p
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Figure 5: The two pressure profiles resulting from the integration of the previously
determined baryon densities (37). As explained above, different to the baryon den-
sity the pressure at the pQCD limit lies inside a band spanned by the renormaliza-
tion scale parameter X, explaining why both curves take on different values in this
limit.

When using Np interpolation points, we have Np − 2 free parameters respectively
for c2

s,i and µi because the first and final interpolation pairs are fixed by the CET
and pQCD constraints. The two constraints for the baryon density and pressure at
2.6 GeV eliminate two further parameters, leaving us with 2Np − 6 free parameters.
An advantage of this method in contrast to the piecewise polytropes is, that it has
less free parameters and is thus more cost-effective. Lastly, by constructing an EoS
starting from the speed of sound, continouity and subluminality of the speed of sound
are ensured by construction - which is not the case for the piecewise polytropes and
a known issue of this method. We close the discussion of the method by noting
that although we do not pay particular attention to phase transitions, the method
naturally generates EoSs with phase transitions too since sometimes the squared
speed of sound will be sampled near zero by chance.

16
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Figure 6: Plugging these EoSs into the TOV equations yields the M-R relation.

2.3 Low-Density EoS from Nuclear Theory

As discussed in the introduction, for densities nB ≤ 1.1n0 the necessity to use an
interpolation scheme is not given, since at these small densities effective models con-
strained by nuclear experiments can be used to compute the EoS with relatively low
uncertainty. Using chiral effective theory (CET), one can compute the low-density
EoS by using microscopic calculations. The CET EoS we implement is the one in-
troduced by [12] whose microscopic calculations are based on chiral two-neutron and
three-neutron interactions. The still present theoretical uncertainty for the neutron
matter EoS is mostly due to uncertainties in the low-energy coupling constants of
CET. For densities below nB ≤ 0.5n0 we use the Baym-Pethick-Sutherland (BPS)
Crust EoS of [41]. For 0.5n0 ≤ nB ≤ 1.1n0 we use a monotrope that is fitted in such
a way that it matches the CET EoS band provided by the ”soft” and ”stiff” EoSs
in Table 5 of [12]. The authors report that their results are not highly sensitive to
the upper bound of 1.1n0 but state that this is upper bound is most reasonable with
respect to the growing uncertainty. Using (16), our monotrope is of the form

P (nB) = ptrans

(
nB
ntrans

)Γ

. (39)

The energy density can be computed from (20)

e(nB) =

(
etrans −

ptrans
Γ− 1

)
nB
ntrans

+
ptrans

(
nB

ntrans

)Γ

Γ− 1
. (40)
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2.3 Low-Density EoS from Nuclear Theory 18

The index ”trans” refers to the first interpolation point provided in Table 5 of [12]
which is matched to the last interpolation point of the BPS - Crust EoS. The following
values provide a tight fit to the uncertainty band of [12]:

etrans = 87.94 MeV/fm3 ntrans = 0.5792n0 , (41)

ptrans ∈ [0.447, 0.696] MeV/fm3 Γ ∈ [1.76792, 3.2267] . (42)
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Figure 7: Red: The BPS - Crust EoS by Baym et. al [41]. Blue: The CET EoS
provided by a monotrope that is fitted to reside inside the ”soft” and ”stiff” EoS
of [12]. The transition of both EoSs is at e = 87.94 MeV/fm³

Lastly, we also compute the speed of sound of the CET EoS through numerical
differentiation. This then yields the first interpolant of the speed of sound sampling
defined by c2

s,0 and µCET , where the latter of which can be computed from (25) and
(30).

18



2.4 High-Density EoS from Perturbative QCD 19

2.4 High-Density EoS from Perturbative QCD

When the energy density gets very large, an effect called ”asymptotic freedom” takes
place. Asymptotic freedom means that the coupling constants which describe quark
interactions decrease with increasing energy, leading to quarks behaving like free
particles in the asymptotic limit. This is good news, because when the coupling
constants are low, perturbative calculations become valid and allow to determine the
quark matter EoS with relatively good accuracy, thus usually labeled the pQCD EoS.
Perturbative results that are computed to a finite order in the coupling constants are
dependent of an unphysical parameter, here called X which describes the scale of the
chosen renormalization scheme. Thus, X is a way to quantize our ignorance due to
the yet undetermined orders and so it decreases with every order that is computed.
In an analysis conducted by Fraga et. al [42] it has been shown that the numerical
EoS derived by Kurkela et. al [43] can be cast into the form of a simple analytical
fit function of the pressure P with respect to the baryon chemical potential µB. It
describes the pQCD EoS of cold quark matter in β equilibrium and has the form

P (µB) =
3

4π2

(µB
3

)4
(
c1 −

d1X
−ν1

µB/GeV − d2X−ν2

)
. (43)

The authors report that the fitting is optimal for the following values of the fitting
parameters in the regime below µB < 6 GeV

c1 = 0.9008 d1 = 0.5034 d2 = 1.452 ν1 = 0.3553 ν2 = 0.9101 . (44)

Using (36) and (42) we can compute the energy density

e(µB) = −P (µB) +
µ4
B

27π2

(
c1 −

d1

Xν1
(
µB − d2

X−ν2

))+
d1µ

5
B

108π2Xν1
(
µB − d2

Xν2

)2 . (45)

The question arises where we attach this pQCD EoS to the part of the EoS that
comes from the speed-of-sound interpolation method. The authors of [43] report
that the relative uncertainty of the quark matter EoS at 2.6 GeV is the same as the
uncertainty of the CET EoS at 1.1n0, marking 2.6 GeV as the attachment point.
Since the pressure of the pQCD EoS (43) at the transition point is dependent on X
only, we ensure the matching by choosing X in such a way that (43) has the same
pressure value as the one coming from the speed of sound interpolation EoS.
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Figure 8: The fitting function (45), showing the upper and lower uncertainty
bounds corresponding to X = {1,4}. The two dashed lines show the upper and
lower pressure bound at µB = 2.6 GeV corresponding to the interval 2580-4243
MeV/fm³ which marks the interval that all EoSs coming from the speed-of-sound
interpolation arrive at.

Through formulae (43) and (45), one can also analytically compute the speed of
sound of the pQCD EoS given by

c2
s =

dp

de
=

dp

dµB

[
de

dµB

]−1

. (46)

The speed of sound profile of every EoS we generate is ensured to be matched con-
tinuously to the pQCD speed of sound dictated by (46). Since the pressure is also
continuous this means that all EoSs are smooth and continuous by construction.
While the CET EoS provides the first interpolant of the speed of sound interpolation
method, the pQCD EoS now provides the last interpolation point, given by (46) and
µpQCD = 2.6 GeV. In practice, it turns out that (46) yields c2

s(µB = 2.6 GeV) . 1/3.
This is not a coincidence however and an important point which will be elaborated
on at the end of this chapter. As explained in the beginning of this chapter, QCD
becomes asymptotically free in the high energy limit.
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Secondly, in this limit and when using 4 dimensions, the ground state of QCD be-
comes conformally invariant [44]. Given that scale invariance follows out of conformal
symmetry, anything that would define a unique energyscale has to vanish. As a con-
sequence, one can impose that the trace of the energy-momentum tensor (3) vanishes,
which is equivalent to

p =
1

3
e −→ lim

e→∞
c2
s(e) =

1

3
. (47)
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Figure 9: The squared speed of sound (46) such as given by the fit function (43)
for the two boundary cases X = 1 (blue) and X = 4 (blue). The curves are trun-
cated on the left at the attachment point µB = 2.6. The dashed green line denotes
the value of the speed of sound in conformal field theory (CFT).

In Fig. 9 one can see that the fit function (43) takes this ”conformal limit” of the
squared speed of sound into account. Additionally, it is visible that the speed of
sound converges to this limit from below. It is also noteworthy, that the value of the
squared speed of sound at the attachment point µB = 2.6 GeV does not exactly yield
1/3 but rather resides slightly below 1/3, since at the corresponding energy density
it has not yet converged close enough to 1/3.
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3 Observational Constraints on the Neutron Star

EoS

3.1 Mass and Radius Constraints by Astrophysical Obser-
vations

In the previous chapters, it was thoroughly explained how to construct EoS models
that satisfy the known theoretical constraints. In the ongoing endeavour of pinning
down the dense matter EoS, it is crucial to conduct astrophysical measurements of
Neutron Star properties. This way, one can successively exclude EoSs that are not
able to account for the growing observational evidence. In detail, the most relevant
measurements that serve this purpose are those of the Neutron Stars mass and ra-
dius, as well as its tidal deformability (Chapter 3.2). In the recent years, the NICER
experiment onboard the International Space Station provided ongoing mass and ra-
dius measurements of Neutron Stars. Several independent groups have analyzed
these measurements. While they partly used different methods for obtaining their
measurements and also provide different error bars, this chapter is not devoted to
the experimental and methodological details. Rather, the relevant numerical values
of the measurements are presented and their expected impact on the EoS ensemble
briefly discussed.

Neutron Star PSR J0740+6620 is highly likely to be the most massive known Neutron
Star. Its mass is reported to be 2.08+0.07

−0.07M� (68.3% credibility) [45]. Comparably to
that, the mass of Neutron Star PSR J0348+0432 has been reported to be 2.01+0.04

−0.04M�
(68.3 % credibility) [29]. These measurements pose tight constraints to the dense
matter EoS since they have to be stiff enough to support a Neutron Star with 2M�.
Thus, we will expect a rapid increase of the speed of sound to account for this
stiffness. Future mass measurements will only be more constraining if they yield a
higher mass than reported by the previous findings.

In addition, there have been two independent measurements of the radius of PSR
J0740+6620. One of them reported a radius of 13.7+2.6

−1.5 km (68% credible inter-
val) [45], while the other group reported 12.39+1.3

−0.98 km (16% and 84% quartiles) [46].
Another radius measurement stems from the pulsar PSR J0030+0451. Again, the
data of this measurement has been analyzed by two different groups. In [47], the
authors report a radius of 12.71+1.14

−1.19 km while stating a mass of 1.34+0.15
−0.16M�, cor-

responding to the 16% and 84% quartiles. The second group reports a radius of
13.02+1.24

−1.06 km with a mass of 1.44+0.15
−0.14M�, both corresponding to the 68% credibility

interval [48].
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Figure 10: Graphical depiction of the astrophysical NS measurements explained in
this chapter. The two orange contours represent the two different measurements of
J0740+6620. For the case of J0030+00451, the analogous measurements are shown
in blue. The green contours depict the mass measurements of J0740+6620. Lastly,
the two MR solutions of Fig. 6 are shown.

For an Equation of State to be in agreement with the astrophysical observations, we
demand that its corresponding MR curve passes through each of the contours that
are seen in Fig. 10, as this is the case for the two examplatory curves. In practice, an
easy way to implement this is by accepting only those EoSs whose MR curve satisfy
R(1.1M�) > 10.8 km, R(2.0M�) > 10.75 km and MTOV ≥ 2.0M�.

3.2 Constraints on the Tidal Deformability due to GW170817

Besides the experimental mass and radius measurements of Neutron Stars, the tidal
deformability can serve as another possibility to constrain the Neutron Star EoS.
During the inspiral of two Neutron Stars that are about to merge, gravitational
waves are emitted that can be measured and used to draw conclusions about the
EoS of Neutron Star matter. The crucial link comes from the tidal distortion the
stars are affected by during the inspiral, which influence the gravitational wave signal
and can be described by a single parameter Λ, which can be seen as a measurement
of how much a Neutron Star deforms in the tidal field of its binary partner.
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Mathematically, the tidal deformability can be defined as the proportionality con-
stant of the static external quadrupolar tidal field Eij and the stars induced quadrupo-
lar moment Qij [49]. Both of these quantities show up when considering a static,
spherically symmetric star located in a tidal field. For large r, the gtt component of
the metric in the stars local asymptotic rest frame can be expanded as [50]

1− gtt
2

= −M
r
− 3Qij

2r3

(
ninj − 1

3
δij
)

+O

(
1

r3

)
+

1

2
Eijxixj +O

(
r3
)
, (48)

where ni = xi

r
. In linear order, the induced quadrupole moment is related to the

tidal field by

Qij = −ΛEij , (49)

where we meet the tidal deformability Λ for the first time. The tidal deformability can
be computed numerically: By introducing a pertubation to the spherically symmetric
metric of [49, 50] one can arrive at a set of two separate ODE’s of the pertubation
H(r) and its derivative β(r)

dH

dr
= β , (50)

dβ

dr
= 2

(
1− 2

m

r

)−1

H

{
−2π[5e+ 9p+

de

dp
(e+ p)]

+
3

r2
+ 2

(
1− 2

m

r

)−1 (m
r2

+ 4πrp
)2
}

+
2β

r

(
1− 2

m

r

)−1 {
−1 +

m

r
+ 2πr2(e− p)

}
. (51)

These two equations are solved simultaneously with the TOV equations (11-12) by
radial integration starting from an infinitesimal step outside the center towards the
surface of the star. For the initial conditions we use the expansion H(r) = a0r

2 and
β(r) = 2a0r. The constant a0 determines how much the star can be deformed and can
be chosen arbitrarily since it will cancel in the formulae for the tidal deformability.
Once the radius of the star has been computed, one can proceed to compute the
quantities y = Rβ(R)

H(R)
and the compactness C = m(R)

R
. Now, one has everything to

compute the l = 2 mode quadrupolar tidal love number k2 [51]

24



3.2 Constraints on the Tidal Deformability due to GW170817 25

k2 =
8C5

5
(1− 2C)2 [2 + 2C(y − 1)− y] · {2C [6− 3y + 3C(5y − 8)]

+ 4C3
[
13− 11y + C(3y − 2) + 2C2(1 + y)

]
+ 3 (1− 2C)2 [2− y + 2C(y − 1)] ln (1− 2C) }−1 , (52)

out of which the tidal deformability ultimately follows through

Λ =
2

3
k2

(
R

M

)5

. (53)

The phase shift of a gravitational wave signal of two merging Neutron Stars will be
affected by the tidal deformabilities of the two stars. The leading tidal contribution
to the phase of the gravitational wave depends on a dimensionless mass weighted
average of the two different tidal deformabilities Λ̃ and is formally of fifth post-
Newtonian order [52]

δψ = −117

256

(πMtotfGW )
5
3

µ
MtotΛ̃ , (54)

where µ = m1m2

M2
tot

, Mtot = m1 +m2 and fGW is the frequency of the gravitational wave.

The mass weighted dimensionless tidal deformability is defined as

Λ̃ =
16

13

(12m2 +m1)m4
1Λ1 + (12m1 +m2)m4

2Λ2

(m1 +m2)5 , (55)

which yields Λ̃ = Λ1 = Λ2 for m1 = m2. For every EoS, we will compute the
corresponding MR curve and all the tidal deformabilities along this curve by using
(11),(12) and (53). We now discard an EoS if there isnt at least one pair of stellar
solutions (m1,Λ1),(m2,Λ2) that simultaneously satisfies q = m2

m1
> 0.73 , Mchirp =

(m1m2)3/5

(m1+m2)1/5
= 1.186M� and Λ̃ < 720 [1]. Since the tidal deformability depends heavily

on the radius (53), this constraint penalizes solutions with high radii. While there
have been multiple gravitational wave detections by the LIGO/Virgo collaboration,
GW170817 is the only one that is confirmed to originate from a NS-NS binary beyond
any reasonable doubt. Future observations promise even tighter constraints to the
dense matter EoS.
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4 Results

In this section, we will present the main results of this thesis, out of which parts were
published in [53].
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Figure 11: PDF plots of ∼ 107 EoSs using 7 segments without having implemented
constraints from astrophysical observations. The yellow contours enclose the subset
of subconformal solutions. The purple band marks the 95% credible interval of the
maximum central energy density. Top left: Squared speed of sound with respect
to the energy density. Top right: Corresponding EoSs. Bottom left: Mass-radius
relation. Bottom right: Tidal deformability (53) with respect to the mass.
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We start with an unconstrained computation, this means that in this computation,
we do not impose any observational, but only the discussed theoretical constraints.
For a thorough explanation on how we determine the PDF’s we use, we refer the
reader to Appendix B. As expected, Fig. 11 shows how our unconstrained ensemble
spans a wide range of possible solutions that is highly consistent with similar cal-
culations shown in Fig. 2 of [54]. While the EoS ensemble mostly concentrates on
the blue band, the gray contour shows the existence of very soft EoSs which will be
discarded once we consider observational data. This plot shows well how theoretical
knowledge coming from nuclear theory and pQCD alone can help to constrain the
set of possible EoS models. The largest possible Neutron Star mass we can report
from this computation is Mmax = 3.63M�. The largest radius Rmax = 16.81 km.

Focusing on the subconformal solutions, as expected, one can see clearly that the
largest mass they can support is way less than that of a generic speed of sound profile,
yielding Msub,max = 2.39M�. The reason for that is due to that a subconformal
speed of sound profile yields a softer EoS which is thus unable to support high-mass
Neutron Stars. As can be seen in the behaviour of the PDF, it is only a low number
of solutions that occupy these large mass and radius regimes though. The cause
of that can already been spotted in the speed of sound plot: Only a rare number
of solutions obtain c2

s > 0.8 and are thus not stiff enough to support such huge
masses. Furthermore one can see that the theoretical constraints alone predict that
a majority of solutions surpasses c2

s > 1/3 with two visible peaks at e ≈ 800 MeV/fm³
and one shortly before the pQCD bound. While the first peak is not a surprise as
the stiffening of the EoS plays a big role in producing > 2M� stars, the second peak
concerned us.

As explained in Chapter 2.4, pQCD calculations show that in the high energy density
limit c2

s has to approach to the value in CFT from below. While this is still the case
for the subset of solutions responsible for this second peak, it is unexpected that
the speed of sound is strongly fluctuating where it should converge. Moreover such
large fluctuations on a small energy scale would mean rapid changes in material
properties which seems unnatural. Given that this limit is derived from microscopic
calculations, the objection that these solutions will be erased once imposing the
astrophysical observations is untenable. Thus, in Fig. 12 it can be seen that this
peak is still present even after imposing the additional constraints. The cause of this
second peak is that the freedom of sampling c2

s and µ agnostically simply allows for
exotic solutions like that. In Appendix B we investigate the impact that an artificial
constraint has in eliminating such strongly fluctuating solutions. In the bottom right
panel we show the tidal deformability (53) with respect to the mass.
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Figure 12: The same plots as in Fig. 11 but now considering astrophysical ob-
servations. Shown are all ∼ 106 EoSs that yield MTOV ≥ 2M� and who are
in accordance with the mass and radius measurements of PSR J0740+6620 and
PSR J0030+0451 - implemented as R(1.1M�) > 10.8 km and R(2.0M�) > 10.75
km. Lastly we demand that Λ̃ < 720 for at least one stellar model per EoS with
Mchirp = 1.186M� and m2

m1
> 0.73.

As the tidal deformability is heavily linked with astrophysical observations this plot
isn’t very telling when only considering theoretical constraints. In Fig. 12 we present
the main result of this thesis as they display the set of all viable stellar models that are
in accordance with the known astronomical data. Given that this thesis is about the
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speed of sound in Neutron Stars, the top left plot is of prime interest. Interestingly,
the speed of sound obeys a steep rise towards c2

s & 1/3 below e . 500 MeV/fm³
corresponding to a stiffening of the EoS at these densities. The vast majority of
solutions then exceed the conformal value of 1/3 to form the still present peak at
intermediate densities. Most models containing quarkyonic matter feature a peak at
low densities show such a peak [21]. The subsequent decrease most solutions then
follow ultimately culminates in the unnatural second peak already discussed. The
yellow contour shows the subset of subconformal solution that never exceed c2

s >
1/3. In the smaller energy densities they reveal a lower bound of c2

s & 0.2. This
explains an observation that will be discussed in Fig. 15, namely that the number of
subconformal solutions is low with respect to the whole sample (∼ 0.001%) as their
successfull sampling has to satisfy this additional geometrical subtlety. Given that
the smallest ec,TOV is way larger than the first peak, this is evidence that this peak
is realized in real Neutron Stars.

In the top right we show the corresponding EoS ensemble. Although the outer gray
contour of our data is in good agreement with [54], the distribution encoded in the
PDF is new. Thanks to that one can see that the bulk of curves cluster in an even
smaller band than the gray one. The kink that is visible at around e = 700 MeV/fm³
is caused due to the phase transition from hadronic to quarkyonic matter. This so
called ”deconfined phase transition” is accompanied by a rapid softening of the EoS.
Analogous to the phase transition of water from solid to liquid, when the latent heat
gets released the pressure increases while the density stays mostly constant. The
presence of quark matter cores in Neutron Stars depends on whether the central
energy density is reached after or before the deconfined phase transition. While still
being subject to debate, in [5] a case for the existence of quark matter cores is made.
Furthermore, one can see that the blue band coincides well with the subconformal
band except for the region around e . 500 MeV/fm³. This is interesting, because if
we would not have the speed of sound plot we might falsely interpret this as evidence
that subconformal solutions are statistically favoured.

In the lower left we see the PDF of the mass radius ensemble. From that, we can pull
an upper mass of M . 3M� as well as a lower limit for the radius of R & 10.5 km.
This fits very well the analytical lower bound R/km & -0.88(M/M�)²+2.66(M/M�)
+ 8.91 of the threshold mass [55]. The same is true for the upper mass limit of the
subconformal solutions M ≈ 2.1M�, being in good agreement with [54] and thus
confirming the incompatibility of M & 2M� stars and a subconformal EoS. In fact,
the measurement of a Neutron Star with M > 2.1M� would exclude the scenario of
a subconformal EoS entirely. Interestingly, our computations reproduce the hump
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at around M = 2.1M� also seen in [54]. An independent analysis of the EoSs
responsible for this hump concludes that they are actually dyamically unstable [56].
In Fig. 13 we present constant mass slices taken from this PDF for M = 1.4M� and
M = 2M�. By determining the respective median and the 95% confidence interval
we can come up with the radius estimates R1.4 = 12.42+0.52

−0.99 km and R2.0 = 12.11+1.11
−1.23

km.

9 10 11 12 13 14 15
R [km]

0.0

0.2

0.4

0.6

P
D

F

1.4 M�
2.0 M�

Figure 13: Constant mass slices at 1.4M� and 2M� of the MR ensemble shown in
Fig. 12. Respective median values are displayed as vertical lines. R1.4 = 12.42+0.52

−0.99

km and R2.0 = 12.11+1.11
−1.23 km.

In contrast to the 2M� slice, the 1.4M� slice obeys a rightward skew which is due
to the tidal-deformability constraint that penalizes large radii. Even though we are
using a different method to generate the EoSs, our median value of R1.4 agrees well
with the piecewise polytropic results of [57] (12.00 < R1.4 < 13.45 km) and also
within the error bars of [58]. Nearing the end of our agnostic analysis, we shift
our focus towards two quantities which are special due to the fact that they can be
directly measured from gravitational wave observations and are thus of prime inter-
est. In the differential equations that describe the orbital evolution of a compact

binary system, a mathematical term called the ”chirp mass” Mchirp = (m1m2)3/5

(m1+m2)1/5

arises in the leading order contribution. Hence, in gravitational wave observations,
it is much easier to measure the chirp mass instead of the two component masses.
The interesting thing is that we can relate this relatively easy measureable quan-
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tity with another quantity that yields precious information about the microphysics,
namely the already introduced binary tidal deformability Λ̃. In Fig. 14, we show
the relation between the two quantities before and after we impose the observational
constraints. Because the gravitational wave event GW170817 had a reported chirp
mass of Mchirp = 1.186M�, we also provide the distribution of the respective slices
as well as the medians. It can be seen that imposing the observational constraints
has the expected effect of narrowing down the band. This can also be seen in the
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Figure 14: Left: PDF of the chirp mass with respect to the binary tidal deforma-
bility before imposing observational constraints. A sliced PDF for Mchirp =
1.186M� is presented with a median of ˜Λ1.186 = 498+477

−474. Right: Same plot but
having observational constraints included. Dashed lines are analytical fits at a 99%
confidence level provided by (56). The median yields Λ̃1.186 = 483+224

−210.

Mchirp slice as it is cut off from the left and right. Interestingly though, the median
does not change significantly. Due to the fact that in the right plot of Fig. 14 we
are agnostic with respect to the mass ratio, one can still see solutions that have Λ̃ >
720 for Mchirp = 1.186M�. This is no contradiction to the Λ̃ < 720 constraint of
GW180817 since it is only valid for m2

m1
> 0.73. We report a median of Λ̃1.186 = 483+224

−210

at a 95% confidence level for the right plot. While the upper bound is mostly
influenced by the Λ̃ constraint, the lower bound is of predictive nature. Lastly, we
fitted the envelope of the band at a 99% confidence level and provide the following
analytical estimate of the minimum (maximum) value of Λ̃ as a function of Mchirp

Λ̃min(max) = a+ bMc
chirp , (56)

31



32

where a = -50(-20), b = 500(1800) and c = -4.5(-5.0). Thus, (56) provides a fast
and direct estimate of the binary tidal deformability of future gravitational wave
observations by simply plugging in the measured Mchirp. Finally, for the last time
in our agnostic analysis we turn our focus to the properties of the speed of sound of
the EoSs we generate. In the introduction, it was explained that one can seperate
EoSs into three different classes depending on how their corresponding c2

s behaves.
Given that we started with an initial ensemble of 1.5 · 107 EoSs, we were not only
curious about how many of them satisfy the observational constraints, but also how
the EoSs are statistically distributed with respect to their sound speed behaviour.
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Figure 15: Histogram that shows the most relevant sets we can decompose our
EoSs in. We present the statistics before imposing the observational constraints
(light blue) and afterwards (dark blue).

The leftmost histogram depicts that out of our 1.5·107 EoSs the number of EoSs that
survive are reduced by roughly one magnitude, namely 1.7 · 106. The green hatched
histogram displays the fraction of EoSs whose c2

s profile is either globally monotonic
or monotonic until at least ec,TOV and thus monotonic inside the Neutron Star. We
apply the same logic to the red hatched set of EoSs whose c2

s profile is either globally
subconformal or at least up until ec,TOV . Here, the subset of constraint-satisfiying
EoSs is reduced by two orders of magnitude from 2.5 · 105 to 5.4 · 103 EoSs. The
major cause of this suppression is the MTOV > 2M� constraint as it penalizes soft
EoSs. Comparably, EoSs with a globally subconformal c2

s are reduced by two orders
of magnitudes as well to only 684 EoSs (yellow hatched histogram).
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Figure 16: The same plots as in Fig. 12 but only using EoSs whose corresponding
speed of sound profile is globally monotonic by construction and thus subconfor-
mal by nature. The gray contour is the envelope of the data. Furthermore the only
observational constraints imposed are those of GW170817.

The last histogram shows the subset of EoSs who are subconformal and monotonic
inside Neutron Stars. With 90 surviving EoSs this is the smallest relevant subset.
Interestingly, we do not find a single EoS whose c2

s is globally monotonic. Being
unsure if there is a physical reason behind this or if this is due to a high statistical
suppression, this observation motivated us to conduct a separate biased computation
containing only EoSs whose c2

s is monotonic by construction. The results of this
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computation can be seen in Fig. 16. The most interesting plot of those four is
the bottom left MR plot as it explains why we did not find any globally monotonic
solution in our agnostic ensemble depicted in Fig. 12 and counted in Fig. 15. It
turns out that an EoS with a globally monotonic speed of sound is apparently not stiff
enough to support a 2M� Neutron Star and is thus most likely ruled out by the mass
measurement of PSR J0740+6620. Indeed, the largest mass configuration we find is
MTOV = 1.99M�. Looking at the top left plot we can see that even though the two
peaks present in Fig. 12 are obviously erased by demanding monotonicity, we still
observe a rapid rise of the speed of sound in small energy densities. Furthermore the
PDF indicates that the vast majority of solutions are of concave nature ( d

2

de2
c2
s < 0)

as they avoid the lower right of the parameter space completely. Given that no
mass constraint is imposed we cannot account this increase to be a mere product of
selection. Much rather, internal investigations have provided numerical evidence that
this rapid rise is mostly caused by the theoretical boundary conditions discussed in
Chapter 2. Looking at the EoS band in the top right, the most prominent feature is
that the accepted solutions all arrive in the stiffer parts of the pQCD-EoS matching
point. Due to the EoS being the integral of the squared sound speed we make the
theoretical boundary conditions responsible for this observation too.

For the sake of completeness, we close the results chapter with our final biased com-
putation using only EoSs whose c2

s is globally subconformal. Albeit we already por-
trayed the subset of subconformal solutions in the yellow contours of Fig. 12, as Fig.
15 shows these solutions are largely underrepresented in an agnostic computation
(being only 0.03% of the whole sample) which motivated a dedicated computation
solely for subconformal solutions. Interestingly, as can be seen in the top left of Fig.
17, similar to the agnostic computation of Fig. 12 the subconformal solutions also
exhibit this funnel at around 500 MeV/fm³. In this case, we can account the rapid
stiffening to the 2M� constraint. It is interesting to see how this funnel is translated
to the EoS space in the top right. As can also be seen in Fig. 2 of [54], like the
monotonic solutions, the subconformal EoSs too only take on very stiff pressure val-
ues at the pQCD matching point. In the bottom right figure which displays Λ with
respect to the mass, we can see that compared with the agnostic ensemble, the lower
boundary of Λ is increased for the subconformal solutions.
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Figure 17: The same plot as in Fig. 12 but using only EoSs whose corresponding
speed of sound is globally subconformal by construction. Both GW170817 and
NICER constraints are imposed. Bottom left plot is baptized the ”stellar dolphin”.
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5 Conclusion

The main goal of this thesis was to investigate the behaviour of the speed of sound
in Neutron Stars. And to dive deeper: Are we able to exclude at least one of the
three logical scenarios of the speed of sound explained in the introduction?

To answer this question, we have used the speed of sound interpolation method to
generate 1.5 · 107 EoSs that are consistent with nuclear matter and pQCD calcula-
tions. Among those that are consistent with the data of GW170817 and the most
recent NICER measurements, we analyzed the statistical distribution of the squared
speed of sound, EoS, mass-radius and tidal deformability ensemble. We find that a
steep rise of the speed of sound below e . 500 MeV/fm³ turned out to be a robust
observation independent of the prior, number of segments or filtering. Furthermore,
our agnostic computation shows that the vast majority of solutions exhibit a robust
peak c2

s > 1/3, thus showing a clear statistical preference towards superconformal
solutions. In fact, only 0.03% of all constraint-satisfying solutions are subconformal.
By conducting a separate computation containing only subconformal EoSs we were
able to identify a lower bound c2

s & 0.2 at e ≈ 500 MeV/fm³. The largest mass sup-
ported by a subconformal solution lies at M ≈ 2.1M�. Albeit still in agreement with
the recent observational evidence, the discovery of a M > 2.1M� Neutron Star would
rule out the scenario of subconformal EoSs entirely. Through our statistical analysis,
we were able to obtain estimates of Neutron Star radii for two representative masses
of 1.4 and 2.0 solar masses, namely R1.4 = 12.42+0.52

−0.99 km and R2.0 = 12.11+1.11
−1.23 km

and also for the binary tidal deformability of GW170817 Λ̃1.186 = 483+224
−210 (All values

at a 95% confidence level). Additionally, we provided an analytical estimate of the
minimum and maximum binary tidal deformability with respect to the chirp mass.
Interestingly, the distribution of our mass-radius relations are in remarkable agree-
ment with analytical predictions on the minimum stellar radius. Refering back to
the question asked in the paragraph above, we were indeed able to exclude one of the
three scenarios discussed in the introduction, namely that EoSs corresponding to a
globally monotonic speed of sound are not stiff enough to support 2M� Neutron Stars
and are thus most likely ruled out by the mass measurement of PSR J0740+6620.
For future work, it would be necessary to implement improved pQCD constraints to
the EoS recently proposed by [59]. Moreover, pursuing the same questions as this
thesis but using alternate ways to parametrize the EoS like piecewise polytropes [39]
or spectral parametrizations [60] could help determine a possible model-induced bias,
which we expect to be small though. Lastly, extending this exercise to the case of
uniformly or differentially rotating Neutron Stars would promise further interesting
insights too.
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A Impact of Segments on the Posterior

In this first part of the Appendix, we explore in more detail the methodological
subtleties of the speed of sound interpolation method. In detail, we investigate
the impact a different choice for the number of segments and sample size has on the
posterior distributions as well as the impact of an artificial constraint proposed in [5].
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Figure 18: Top row: Squared speed of sound for 3,4,5 segments. Middle row: Cor-
responding EoSs. Bottom row: Corresponding MR relations. Yellow contours de-
pict the envelope of the subconformal subset in all plots. NICER and GW170817
constraints are imposed.
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The number of segments used is the main free parameter of the speed of sound in-
terpolation method. This has motivated us to investigate how choosing a different
number of segments impacts the posterior distributioons. In Fig. 18 we show the
results of our computations when choosing 3-5 segments respectively. What imme-
diately caught our attention in these plots is the behaviour of the speed of sound.
While the first peak at low densities turns out to be a robust feature independent
of the number of segments, the strange second peak is not present in the leftmost
3 segment computation. From this observation we conclude that the restricted geo-
metrical possibilites three segments offer do not allow for a second peak when being
consistent with the theoretical and observational constraints. While differences be-
tween the 4 and 5 segment computations can still be spotted, overall they are highly
similar and foreshadow a convergent posterior distribution in the high-segment limit.
We highlight this convergent behaviour in Fig. 19 where we show the outer enve-
lope of all segment computations together. Although in the matter of the second
peak the choice of three segments turned out to be beneficial, comparing the EoS
ensemble the overall disadvantage of a low number of segments becomes evident.
The gray envelope of the three segment computation is noteably thinner than those
of the 4,5 segment computations. Furthermore, the deconfined phase transition is
less pronounced in the former case. Thus we claim that three segments provide a too
coarse description of the speed of sound and thus also for the EoS and MR space.
Concluding our investigation of choosing different numbers of segments, we state
that using a too low number of segments leads to a too restricted description of the
EoS space. On the other hand, a larger number of segments gives rise to artifacts
such as the unnatural second peak and are also more cost expensive from a numerical
standpoint. Given the convergence we have portrayed in Fig. 19, using 7 segments
as we did in all computations of Chapter 4 provided the best balance all advantages
and disadvantages considered. A higher number of segments did not provide any
noteable advantages.

Although the second peak is realized at energy densities larger than those present in
Neutron Stars and is thus not expected to be realized in nature, it is still unnatural
with respect to the behaviour of strongly interacting matter predicted by pQCD.
Since we have shown in Fig. 18 that it can be seen as an artifact of the speed
of sound interpolation method, one can be motivated to come up with a way to
select out the models that cause it by means of being unnatural. In [5], an artificial
constraint was introduced with the aim of sorting out solutions that exhibit a strongly
fluctuating speed of sound in small energy density regimes. We implemented this
constraint ourselves to see how it impacts the speed of sound distribution.
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Figure 19: Shown is the convergence of the enclosing envelopes of five independent
computations, varying the used number of segments as 3,4,5,7. The red envelope
is the envelope coming from the computation that has the artificial constraint (57)
implemented.

102 103 104

e [MeV/fm3]

0.0

0.2

0.4

0.6

0.8

1.0

c2 s

ec,TOV c2
s < 1/3

10−4 10−3 10−2 0.02 0.04 0.06 0.08 0.1 0.5 1

PDF

102 103 104

e [MeV/fm3]

100

101

102

103

104

p
[M

eV
/f

m
3
]

nuclear
theory

pQCD

ec,TOV

c2
s < 1/3

constrained

10−4 10−3 10−2 0.02 0.04 0.06 0.08 0.1 0.5 1

PDF

10 11 12 13 14

R [km]

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

M
[ M
�

]

c2
s < 1/3

constrained

10−4 10−3 10−2 0.1 0.2 0.3 0.4 0.5 1

PDF

Figure 20: The result of our filtered computation using the artificial constraint
(57). Seven segments are used and GW170817 and NICER constraints imposed.

39



40

In order to eliminate solutions with strongly fluctuating speed of sound, one can
discard them if they satisfy the following condition for at least one pair of neighboured
interpolants

ei+1 − ei > ∆ln(e) · ei , (57)

where ∆ln(e) can be chosen as sufficient. In Fig. 20 we show our results when
choosing ∆ln(e) = 0.5. Although this condition seems to tame the second peak and
eliminate strongly fluctuating behaviour at around e = 200 MeV/fm³ visible in Fig.
12 and Fig. 17, it has introduced additional artifacts in the high energy density
regime. What we also find interesting, is that this condition suppresed the rightward
hump in the MR plot, showing that this feature is caused by strongly fluctuating
speed of sound profiles. This also explains why the hump is not very pronounced
in the 4 segment computation, and non-existent in the 3 segment computation both
visible in Fig. 18. A low number of segments is obviously not able to generate a
strongly fluctuating sound speed.
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Figure 21: The radial PDF of the M = 1.4M� mass slice of our main 7 segment
computation of Chapter 4. Shown are the PDFs when varying the sample size.

Given that we chose a statistical emphasis on the depiction of our data, we are
motivated to analyze the convergence a subset of our whole sample size of 1.5 · 107

EoS yields. While the 1% PDF is already remarkably close to the full dataset, the
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10% computation is already basically indistinguishable from the full dataset. Note
though that the boundary of the data, marked as the gray contour in all our plots
does depend more heavily on the sample size.

We close our discussion of Appendix A by considering the central energy density of
all MTOV configurations we have.
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Figure 22: Shown is the distribution of all ec,TOV our constraint-satisfying ensem-
ble (Fig. 12) offers. The red dashed line marks the median at e = 1063 MeV/fm³.
The purple envelope marks the 95% confidence interval 819-1462 MeV/fm³ identi-
cal to the one depicted in 12.

Fig. 22 reveals that the vast majority of central energy densities cluster around
819-1462 MeV/fm³ with a clear peak at ≈ 1030 MeV/fm³. The boundary of the
distribution lies between ec,TOV,min = 589 MeV/fm³ and ec,TOV,max = 4451 MeV/fm³
which is comparable to what is found in Fig. 6 of [5]. When isolating the EoSs that
yield the ec,TOV of the reported boundary-values, we noticed that they exhibit a very
strong phase transition. Due to this phase transition, trying to accurately resolve the
MTOV configuration by steadily increasing the initial central density is hard since the
pressure does not change significantly. Because of that, one runs into the danger of
running into the unstable branch of the MR curve and cannot accurately resolve the
range of ec,TOV . This is the reason why we compute the median of the distribution
and use the 95% percentile ranges as the actual boundaries that we depict in all our
plots as the vertical purple bands.
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B Numerical Setup

B.1 RK4 Integrator

The numerical grunt work of this thesis lies in solving the TOV equations. As ex-
plained in Chapter 1.1 they only yield an analytical solution for the unrealistic case
of constant energy density. Because of that, we have to solve the TOV equations
numerically. Fortunately, we are dealing with a system of first order ordinary dif-
ferential equations which can be integrated using a fourth order Runge-Kutta routine.

Since we are seeking the stellar solution P(r) for a given central density pc, we start
by discretizing the radial coordinate on an equidistant grid

ri = rinitial + i ·∆r i ∈ [0, Nradial − 1] ∆r =
rend − rinitial
Nradial − 1

. (58)

Because we do not know the radius of the star before the calculation has finished,
a sufficiently high rend is necessary. For rinitial, sufficiently low values have proven
themselves to work. We are dealing with a system of four ODE’s (11,12,50,51) that
can be described as

d~y(r)

dr
= ~f(r, y) ~y(r) = (P (r),m(r), H(r), β(r))T ~y(rinitial) = ~y0 , (59)

where ~f(r, y) makes up the right hand side of those ODE’s. Starting from the known
initial values at ~y(rinitial) present in the center of the star, we can now integrate the
pressure and mass outwards by using the recursive Runge-Kutta 4 relation

~yn+1 = ~yn +
∆r

6

(
~k1 + 2~k2 + 2~k3 + ~k4

)
n ∈ [0, Nradial − 1] . (60)

The vectors ~ki are given by:

~k1 = ~f(rn, yn) , (61)

~k2 = ~f(rn +
∆r

2
,∆r

~k1

2
) , (62)

~k3 = ~f(rn +
∆r

2
,∆r

~k2

2
) , (63)

~k4 = ~f(rn + ∆r, yn + ∆r ~k3) . (64)
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B.2 Numerical Implementation of the Pressure 43

At some point in the outward integration, the radius will step out of the surface of
the Neutron Star, resulting in a negative pressure. Thus, the condition P (R) < 0
will serve as a criterion to determine the radius of the Neutron Star. Its mass will
then be given by MNS = m(R). The following plots display three different solutions
to the TOV equations computed by the RK-4 algorithm outlined above:
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Figure 23: Three different solutions of the TOV equations obtained by using three
different central pressures. Orange: 500 MeV/fm³, Green: 400 MeV/fm³, Blue:
250 MeV/fm³

B.2 Numerical Implementation of the Pressure

While c2
s (31) and nB(µB) (33) have closed analytical expressions and can thus be

easily implemented numerically, the pressure (38) turned out to be relatively hard
to implement analytically since numerical truncation errors led to non-vanishing
imaginary parts of the hypergeometric function. Therefore we did not implement
the analytical expression (38) in the code, but rather integrated nB(µB) numerically
(37) by using a simple trapezoidal rule where we discretize the chemical potential on
an equidistant grid

h(µB) =
µB − µCET
N − 1

, µ0 = µCET , µN = 2.6GeV, µα = µCET +α · µN − µCET
N − 1

, (65)

p(µB) = pCET +
h(µB)

2
[nB(µCET ) + nB(µB)] + h(µB)

N∑
α=1

nB(µα) . (66)
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B.3 The Rocky Path Towards a Viable Solution 44

B.3 The Rocky Path Towards a Viable Solution

Generate CET EoS:
Sample ptrans ∈ [0.447, 0.696] ∧ Γ ∈ [1.76, 3.22]

−→ Compute µCET

Generate speed-of-sound-interpolation EoS:
Sample c2

s,max ∈ [0,1], c2
s,i ∈ [0, c2

s,max], µi ∈ [µCET , 2.6]
Order µi and if wanted also c2

s,i ascendingly

Generate pQCD EoS:
Sample X ∈ [1, 4]

nB(µB = 2.6) = nB,pQCD(2.6, X)
∧

p(µB = 2.6) = ppQCD(2.6, X)

Theoretically viable EoS generated

Try again

yes

no
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B.4 How we Compute the PDFs we are Using 45

Generate TOV sequence interpolants Mi, Ri,Λi

MTOV ≥ 2.0M�
∃ (m1,Λ1), (m2,Λ2) : Λ̃ < 720
m2

m1
> 0.73 ∧Mchirp = 1.186M�
R(1.1M�) > 10.8 km
R(2.0M�) > 10.75 km

Discard EoS

EoS supports the observational evidence and is kept

yes

no

B.4 How we Compute the PDFs we are Using

As can be seen in our result plots, we have chosen a depiction of our data that
emphasizes the statistical distribution of our set of solutions. To accomplish that,
one has to come up with a two dimensional probability density function (PDF) that
measures how many solutions are clustered within a given two-dimensional region
with respect to the total number of solutions. Here, ”solution” refers to either an
EoS, c2

s, MR or Λ curve. In practice, finding a sensible way to define such a PDF
turned out to be non-trivial. Also, there are certainly multiple different ways of
accomplishing this. In what follows we briefly outline how we chose to construct the
PDF for the example of the MR plot.
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B.4 How we Compute the PDFs we are Using 46

First of all, we set up an equidistant 2D grid Nmass ·Nradial, using Nradial = Nmass =
700 in this thesis through

Mi = Mmin + i · Mmax −Mmin

Nmass − 1
∧ Rj = Rmin + j · Rmax −Rmin

Nradius − 1
, (67)

where the indices i and j denote each grid. The maximum and minimum values
for each variable is chosen in a suitable way. The PDF is then of course a discrete
function providing a numerical value for each bin

PDF (i, j) =
bin(i, j)

∆M ∆R
∑

i,j bin(i, j)
. (68)

∆M and ∆R are defined by (67). bin(i,j) is a measure about how much weight is
given to this specific bin. There are several ways one can compute the bin(i,j). The
most simple way is to successively count how many distinct curves pass through the i-
jth bin. This is the most straightforward way to relate the density of solutions passing
through a space ∆M ·∆R with respect to the total number of solutions. One might
criticise this approach as it gives equal weight to any curve that passes through each
bin, not distinguishing between curves that only sparsely pass and ones that pass
right through. Thus, one can modify bin(i,j) for example as the sum of the average
values of every curve that passes through bin(i,j). As already said above, at this
stage one can use several different approaches. At any rate, all of these approaches
should yield the same PDF in the limit of small gridsizes, which we have observed
for the two method explained in this paragraph, making them indistinguishable. We
use approach (68) for all of our plots. When there are logarithmic axes involved, we
simply change (67) such that it is linear on a logarithmic scale. It can be easily seen,
that (68) is normalized since∑

i,j

PDF (i, j) ·∆M ·∆R =
∑
i,j

bin(i, j)∑
i,j bin(i, j)

= 1 , (69)

which is just the two-dimensional discretized integral of the whole space. Lastly, one
can now easily extract mass and radii slices out of (68), turning it into a 1D PDF.
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C List of Abbreviations

NS - Neutron Star

EoS - Equation of State

TOV - Tolman Oppenheimer Volkoff

CET - Chiral Effective Theory

pQCD - perturbative Quantum Chromodynamics

CFT - Conformal Field Theory

NICER - Neutron Star Interior Composition Explorer Mis-
sion

GW - Gravitational Wave

LIGO - Laser Interferometer Gravitational-Wave Observa-
tory

PSR - Pulsating Source of Radiation

PDF - Probability Density Function
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