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Exercise 4: Maxwell equations in index notation [1+1+1+1+1 points]

This exercise will guide you through the process of transforming Maxwell’s equations from their traditional

vector notation into a form that is manifestly invariant under Lorentz transformations, highlighting the

covariant nature of electromagnetism. In 19th-century vector notation Maxwell’s equations can be written

as follows

∇× B− ∂tE = J (1)

∇E = ρ (2)

∇× E+ ∂tB = 0 (3)

∇B = 0 (4)

The equations are Lorentz invariant, but this is difficult to see in this notation.

(1) Translate these equations into index notation.

(2) Replace the electric and magnetic fields with their definition in terms of the scalar potential φ and

vector potential Ai
Ei = −∂iφ− ∂tAi , Bi = ϵi jk∂jAk . (5)

Show that Eq.(3) and Eq.(4) reduce to identities, i.e., are satisfied trivially with these definitions.

(3) Use the definitions for the field strength tensor Fµν = ∂µAν − ∂νAµ, where Aµ = (φ,Ai), and the
current four-vector Jµ = (ρ, Jx , Jy , Jz) to show that the inhomogeneous Eq.(1) and Eq.(2) can be

written as

∂µF
µν = Jν . (6)

(4) Use the definition of the dual field strength tensor ∗F µν = 1
2ϵ
µνρσFρσ to show that the homogeneous

Eq.(3) and Eq.(4) can be written as

∂µ∗F µν = 0 . (7)

(5) Use the definition of Fµν in terms of Aµ and show that Eq.(3) and Eq.(4) actually follow from the

Bianchi identity

∂[µFνλ] = 0 . (8)

Additional information: The Bianchi identity follows from the more general Jacobi identity any differential

operator must satisfy. In the next exercise you will find an even more elegant explanation for this using the

language of differential forms. There we will see that the homogenous Maxwell equations follow from the

fact that the field strength tensor is an exact two form F = dA and d2 = 0 implies dF = d2A = 0, so stay

tuned!
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Problem 5: Maxwell equations in form notation [1+1+1+1+1 points]

In this exercise, you will practice essential concepts in differential geometry and their application to electro-

magnetism using the language of forms and tensors. These include operations such as exterior derivatives,

wedge products, and the Hodge dual and should show how electromagnetism can be expressed elegantly

using differential forms and their corresponding manipulations.

(1) Consider the U(1) gauge field represented by the one-form A = Aµdx
µ on 4-dimensional flat-space,

and derive the explicit expressions for the two-form components of the field strength tensor defined

by F = dA.

(2) Verify by explicit calculation that the two-form F is exact, and as a consequence, show that dF = 0

reproduces the homogenous Maxwell equations.

(3) Consider the Hodge dual ∗F and determine its rank p, i.e., what p-form it is in four spacetime
dimensions.

(4) Determine the rank q of its exterior derivative d ∗ F and show that d ∗ F = J reproduces the inhomo-
geneous Maxwell equations. For this you have to write down the correct q-form expression for J on

the right hand side.

(5) Compute the double Hodge dual ∗∗F of F . Does d∗∗F = 0 provide an independent set of equations?

Additional information: You now have three different, but equivalent, ways to formulate Maxwell’s equations.

The tensor form with indices offers a significant improvement in notation compared to the old-school vector

form. However, aside from the compact representation of the equations, the advantages of this formalism

may not be immediately clear in relatively simple theories like electromagnetism. The true power of this

formalism becomes more apparent when dealing with higher-rank tensors and non-coordinate bases, which

we will explore later in the course, as well as when working with more complex theories involving higher-form

fields, which are beyond our current scope.

Problem 6: Special relativistic field theory [1+1+1 points]

In theoretical physics, the standard approach to define a theory is to write down an action that encodes

the fundamental degrees of freedom, their symmetries and interactions. After constructing the action, one

can then systematically derive the equations of motion. In this exercise, you will combine two basic field

theories: a complex scalar field theory and classical electromagnetism. These two fields will be coupled via

a U(1) gauge symmetry, representing the interaction between charged particles (described by the complex

scalar field) and the electromagnetic field. You will explore how these fields interact, derive their equations

of motion, and investigate the consequences of this coupling, particularly how it affects the decoupling of

particle and antiparticle degrees of freedom.

(1) Consider the action for a complex scalar field φ in 4-dimensional flat spacetime, with a general potential

V (φ∗φ), given by:

S =

∫
d4x
√
−η (−ηµν∂µφ∗∂νφ− V (φ∗φ)) . (9)

Derive the corresponding equations of motion for this system.

(2) Show that the complex scalar field theory is equivalent to a theory with two real scalar fields, φ1 =

Re(φ) and φ2 = Im(φ). Determine the conditions under which the two fields decouple, meaning they

satisfy independent equations of motion.

(3) The complex field φ can be used to describe particles and antiparticles, representing electrically posi-

tively and negatively charged degrees of freedom. To couple this theory to electromagnetism, extend

the Lagrangian by introducing a U(1) gauge field Aµ as follows:

S =

∫
d4x
√
−η

(
−ηµν(Dµφ)∗Dνφ− V (φ∗φ)−

1

4
FµνF

µν

)
, (10)
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where the covariant derivative is Dµ = ∂µ − ieAµ, and e is the electric charge. Derive the equations
of motion for this theory. Discuss whether it is still possible to decouple the particle and antiparticle

degrees of freedom. If not, provide an argument explaining why.

Additional information: Don’t be discouraged by the apparent complexity of this exercise. No matter how

intricate the action may seem, the process always follows the same logic: to find the equations of motion

for a field, you simply vary the action with respect to that field. All the techniques and steps required to

carry out these variations have been covered in the lecture, so you already have the tools needed to tackle

this exercise.
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