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Exercise 7: Gymnastics with (anti)symmetric tensors [1+1+1+1+1 points]

In this exercise you will practice some basic manipulations with symmetric and antisymmetric tensors. Con-

sider a symmetric (0,2) tensor S, anti-symmetric (2,0) tensor A, a generic (0,2) tensor B and generic (2,0)

tensor C and show:

(1) Bµν = B[µν] + B(µν) ,

(2) Cµν = C[µν] + C(µν) ,

(3) AµνSµν = 0 ,

(4) AµνBµν = A
µνB[µν] ,

(5) SµνC
µν = SµνC

(µν) .

Exercise 8: Relativistic energy momentum tensor [1+1+1+1+1 points]

In relativistic field theories energy and momentum are encoded in a tensor called energy momentum tensor.

In this exercise you will revisit the scalar and U(1) gauge field theories of the previous exercise sheet, compute

their energy momentum tensors and show that they are conserved. Given an action S the energy momentum

tensor of the theory can be defined as T µν = − 2√
−g

δS
δgµν
, where g = det gµν and gµν = ηµν in the flat-space

examples here.

(1) Whenever you vary an action with respect to the metric you also have to vary the determinant of the

metric, so you first have to show the following relation that reoccurs in these kind of calculations:

δg = g gµνδgµν . (1)

(2) Now let us consider the real scalar field theory with the action you know from the lecture

S =

∫
d4x
√
−η (−ηµν∂µφ∂νφ− V (φ)) . (2)

Derive the energy momentum tensor of the theory.

(3) Show that the energy momentum tensor is conserved on-shell ∂µT
µν = 0, i.e., by assuming the

corresponding equations of motion.

(4) Next consider the U(1) gauge field theory of electromagnetism

S =

∫
d4x
√
−η

(
−
1

4
FµνF

µν

)
. (3)

Derive the energy momentum tensor of the theory and show that it is conserved on-shell.

(5) Repeat the calculation by adding a source term AµJ
µ to the action. Is the corresponding energy

momentum tensor still conserved? If not, explain why.
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Exercise 9: Who is afraid of manifolds? [1+1+1+1+1 points]

In this exercise you will familiarize yourself with the mathematical structure of a manifold by exploring

concrete examples and applying the formal definition of a manifold to different spaces. By working through

these problems, you will practice constructing atlases, verifying smooth transitions between overlapping

charts, and examining cases that satisfy or fail the manifold criteria.

(1) Sketch three different examples of spaces that are manifolds and three examples of spaces that are

not manifolds. Explain in words why your examples do or do not satisfy the definition of a manifold.

(2) Show that a two-sphere S2 is a manifold by constructing an appropriate atlas of charts that covers it.

Note that we have done this already during the lecture, so here you are asked to repeat this calculation

by performing the stereographic projections and fill in the mathematical steps we skimmed over during

the lecture.

(3) Consider a two-dimensional torus which can be defined as a quotient space T 2 = R2/(2πZ × 2πZ)
of the Euclidean space R2 with coordinates (x, y) by identifying points that differ by integer multiples
of 2π, i.e., two points (x, y) and (x ′, y ′) are the same if

x ′ = x +m 2π , y ′ = y + n 2π , m, n ∈ Z . (4)

Show that T 2 is a manifold by constructing an atlas for it. Note: In general a compactification of

a manifold, like of R2 in our example, is not automatically a manifold. However, the product space
of manifolds is indeed automatically a manifold. In case of the torus one could therefore simplify the

proof by the fact that T 2 is equivalent to the product space of two circles S1 × S1 and that S1 is a
manifold.

(4) Next consider a two-dimensional cone, which can be parametrized using polar coordinates

M = (r cos θ, r sin θ, r) , r ≥ 0 , θ ∈ [0, 2π) . (5)

Argue under which conditions this is a manifold and construct the corresponding atlas.

(5) Finally, consider the Möbius strip (https://en.wikipedia.org/wiki/Möbius strip) whose embedding into

3D space can be parametrized as follows:

M =
(
(1 +

u

2
cos θ) cos θ, (1 +

u

2
cos θ) sin θ,

u

2
cos θ

)
, u ∈ [−1, 1] , θ ∈ [0, 2π) , (6)

where at θ = 0 and θ = 2π the values of u are identified with a twist. Since this 3D embedding

is non-orientible you will have to construct at least two charts, one describing the ”front” and one

describing the ”back” of the Möbius strip.

Additional information: Remember, to show that a space is indeed a manifold, you always have to perform

the following three steps: 1) invent a set of coordinate charts, 2) check that this set of charts covers the

entire space, 3) and verify that the transition on the overlap of these charts is smooth.
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