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Exercise 13: Particle number conservation [1+1+1+1+1 points]

In this exercise, we explore the concept of invariant volume elements in both spacetime and momentum

space. The goal is to confirm the invariance of volume elements under coordinate transformations. These

invariants play a crucial role in general relativity, and statistical mechanics in curved spacetime.

(1) Confirm that the proper 4-volume element is given by

d4V =
√
−gd4x ,

by showing that it is invariant under coordinate transformations.

(2) Next show invariance of the proper 3-volume element of an observer with velocity uµ is given by

d3V =
√
−gu0d3x .

(3) Find the invariant volume element d4p of 4D momentum space.

(4) What is the invariant 3-volume when the on-shell condition pµpµ = m
2 is imposed?

(5) Finally, consider a group of N particles that occupy a volume d3xd3p in 6D phase space, such that the

density of particles n is defined by

N = n d3xd3p .

Show Lorentz invariance of n, i.e., that all inertial observers compute the same value of n.

Exercise 14: Local flatness theorem [1+1+1 points]

This exercise focuses on the local flatness theorem, a fundamental concept in differential geometry and

general relativity. The theorem asserts that in any spacetime described by a smooth manifold, it is always

possible to find a local coordinate system where the metric tensor takes the form of the Minkowski metric,

resembling flat spacetime.

(1) Proof the local flatness theorem by following the steps provided in the lecture notes.

(2) You should have now convinced yourself that for each spacetime there exist coordinates in which

the metric looks locally like Minkowski, i.e., flat space. Naively one could then conclude that each

spacetime has zero curvature in these coordinates. Explain why this is not the case.

(3) Argue the local flatness theorem without any calculation based on what you know about manifolds.
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Exercise 15: Conformal transformations [1+1+1+1 points]

This exercise explores the properties and physical implications of conformal transformations, which rescale

the spacetime metric by a position-dependent factor, Ω(xσ).

(1) Show that conformal transformations ds2 → Ω(xσ)2ds2 do not change the sign of the norm of vectors,
i.e., do not change the causal structure of a spacetime.

(2) Generalize the Euclidean expression for the dot-product between vectors A⃗ · B⃗ = |A⃗||B⃗| cos θ to arrive
at a formula for the angle between 4-vectors on curved space.

(3) Show that angles between 4-vectors are preserved under conformal transformations.

(4) As a simple, but physically relevant, example consider the following line element

ds2 = gµνdx
µdxν = −dt2 + a(t)2

(
dx2 + dy2 + dz2

)
.

Find a coordinate transformation that brings the line element into conformally flat form

ds2 = Ω(xρ)2ηµνdx
µdxν ,

where ηµν is the Minkowski metric.

Remark: The line element in (4) is the so-called Friedmann–Lemâıtre–Robertson–Walker metric, which is a

solution to the Einstein equations that describes a homogenous and isotropically expanding spacetime such

as our Universe.
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