

Exercise Sheet 7

Introduction to General Relativity

Lecturer Dr. Christian Ecker
 Tutors MSc. Marie Cassing, Dr. Tyler Gorda
 Hand-in date 10. December 2024

Exercise 19: Riemann tensor symmetries

[1+1+1+1+1 points]

The Riemann tensor is a fundamental object in differential geometry that encodes the curvature of a manifold as a (1,3)-tensor. Given its components $R_{\beta\mu\nu}^\alpha$, which involve four indices, one might initially assume that the tensor has n^4 components in n dimensions - for instance, $4^4 = 256$ components in 4-dimensional space. However, the Riemann tensor possesses several symmetries that drastically reduce the number of independent components. In this exercise, you will examine the symmetries of $R_{\beta\mu\nu}^\alpha$ and determine the actual number of independent components in n -dimensional space.

(1) Show antisymmetry of the last two indices

$$R_{\sigma\mu\nu}^\rho = -R_{\sigma\nu\mu}^\rho.$$

(2) Show antisymmetry of the first two indices

$$R_{\rho\sigma\mu\nu} = -R_{\sigma\rho\nu\mu}.$$

(3) Show symmetry under exchange of the first and second pair of indices

$$R_{\rho\sigma\mu\nu} = R_{\mu\nu\rho\sigma}.$$

(4) Show that the Riemann tensor satisfies the Bianchi identity

$$R_{\rho\sigma\mu\nu} + R_{\rho\mu\nu\sigma} + R_{\rho\nu\sigma\mu} = 0.$$

(5) Use the symmetries (1)-(4) to derive the formula for the number N of independent components of the Riemann tensor in n -dimensional space

$$N = \frac{1}{12}n^2(n^2 - 1).$$

How many components are there in a 4D spacetime?

Remark: There are multiple approaches to solving this exercise. While the brute-force method of using the definition of the Riemann tensor in terms of the Christoffel symbols is viable, it can be quite tedious. For a more elegant solution, you may look into the lecture notes.

Exercise 20: Curvature of the 2-sphere

[1+1+1+1+1 points]

The 2-sphere is the simplest example of a curved space with constant positive curvature. The metric for the 2-sphere with radius R in coordinates $x^\mu = (\theta, \phi)$ can be written as

$$ds^2 = R^2(d\theta^2 + \sin^2 \theta d\phi^2).$$

In this exercise, you will compute key geometric quantities for the 2-sphere and verify that it is a maximally symmetric space.

- (1) Calculate the Riemann tensor. For this you may want to recycle the Christoffel symbols you derived in Exercise 16.
- (2) Calculate the Ricci tensor and Ricci scalar.
- (3) Use your result from Exercise 17 for the deficit angle $\Delta = 2\pi(1 - \cos \theta_0)$ under parallel transport along a closed loop to compute the following measure of curvature:

$$C = \lim_{\theta_0 \rightarrow 0} \frac{\Delta}{A},$$

where $A = \int \sqrt{-g} d^2x$ is the area enclosed by the loop. Compare the result for C to your computation of the Ricci scalar.

- (4) Use the symmetries of the Riemann tensor to count its total number of independent components.
- (5) Verify that the sphere is a maximally symmetric space by checking that its Riemann tensor satisfies the relation

$$R_{\rho\sigma\mu\nu} = \frac{R}{n(n-1)}(g_{\rho\mu}g_{\sigma\nu} - g_{\rho\nu}g_{\sigma\mu}).$$

Exercise 21: Maurer-Cartan formalism

[1+1+1+1+1 bonus points]

The Maurer-Cartan formalism extends the concept of coordinate bases to non-coordinate bases. In this exercise, you will investigate the relationship between Christoffel symbols and the spin connection, prove the tetrad postulate, and express the Riemann tensor as a tensor-valued 2-form. Furthermore, you will derive how metric compatibility and the torsion-free condition impose constraints on the vielbein and spin connection.

- (1) Shows the relation between Christoffel symbol and spin connection

$$\Gamma_{\mu\lambda}^\nu = e_a^\nu \partial_\mu e_\lambda^a + e_a^\nu e_\lambda^b \omega_{\mu b}^a.$$

- (2) Proof the tetrad postulate

$$\nabla_\mu e_\nu^a = 0.$$

- (3) Show that the Riemann tensor can be written as (1,1)-tensor valued 2-form

$$R_b^a = d\omega_b^a + \omega_c^a \wedge \omega_b^c.$$

- (4) Show what implication the concept of metric compatibility $\nabla_\rho g_{\mu\nu} = 0$ has on the spin connection.

- (5) Show that the torsion-free condition leads to the following relation between the vielbein and the spin-connection

$$de = -\omega^{ab} \wedge e_b.$$

Remark: This exercise is marked as a bonus, meaning its points will contribute to your total score but not to the maximum score used for calculating your relative total score. With the additional material on the Maurer-Cartan formalism provided in the file MaurerCartan.pdf, this exercise should be straightforward—so don't miss the opportunity to earn extra points!