

Exercise Sheet 10

Introduction to General Relativity

Lecturer Dr. Christian Ecker
 Tutors MSc. Marie Cassing, Dr. Tyler Gorda
 Hand-in date 22. January 2025

Exercise 28: Effect of gravitational waves

[1+1+1+1+1 points]

In this exercise you will study the effect of gravitational waves on the relative motion of test particles as described by the geodesic deviation equation

$$\frac{D^2}{d\tau^2} S^\mu = R_{\nu\rho\sigma}^\mu U^\nu U^\rho S^\sigma, \quad (1)$$

where U^μ is the test particle tangent velocity field and S^μ the deviation vector.

- (1) Express the leading contribution to $R_{\nu\rho\sigma}^\mu U^\nu U^\rho$ on the right hand side of the deviation equation in TT-bar gauge ($h_{\mu 0} = 0$).
- (2) Write down the differential equations for the deviations S^1, S^2 of slowly moving ($\tau = x^0 = t$) experiencing a gravitational wave traveling in x_3 -direction.
- (3) Solve these equations separately for the plus- and cross-polarization ($C_+ = C_{11}, C_x = C_{12}$) and illustrate how a circular point particle distribution changes in time when such waves passes through it.
- (4) Define left- and right-handed circular polarization modes and illustrate how an initially circular distribution of test particles changes in time when such a wave passes through it.
- (5) Determine the rotation angle θ under which these GW polarization modes are invariant and deduce from this the spin of the graviton $s = 2\pi/\theta$.

Exercise 29: Binary gravitational wave frequency

[2+2 points]

Formulate the differential equation governing the gravitational wave frequency $f(t) = \frac{\Omega(t)}{\pi}$ for a binary system. Use the leading-order approximation by combining the Newtonian expression for the gravitational potential energy, $E = -\frac{Gm_1m_2}{R}$, where $R = |\vec{r}_1 - \vec{r}_2|$, with the orbital frequency, $\Omega = \sqrt{\frac{GM}{R^3}}$, and the quadrupole formula for the power radiated as gravitational waves, derived earlier.

- (1) Derive the equation that describes the frequency evolution of an equal mass ($m_1 = m_2 = M/2$) binary system

$$\frac{df}{dt} = \frac{24}{5} \pi^{8/3} (GM)^{5/3} f^{11/3}. \quad (2)$$

- (2) Derive the corresponding equation for non-equal mass binary systems ($m_1 \neq m_2$) and identify the explicit form of the chirp mass \mathcal{M} in terms of m_1 and m_2 in your final formula

$$\frac{df}{dt} = \frac{96}{5} \pi^{8/3} (G\mathcal{M})^{5/3} f^{11/3}. \quad (3)$$

Note: In (2) it is useful to perform the calculation in the center of mass coordinate system.

Exercise 30: Direct detection of gravitational waves [1+1+1+1+1 points]

In this exercise, you will determine the conditions necessary for the direct detection of gravitational waves and examine the historic landmark event GW150914, a binary black hole merger detected by the LIGO and Virgo observatories.

- (1) Use your previously derived formula for the gravitational wave strain of a binary system to estimate the strain amplitude h during the coalescence of a binary with two black holes of $M = 10 M_{\odot}$ separated by ten times their Schwarzschild radius $R_s = 2GM/c^2$ located at a cosmological distance of 100 Mpc.
- (2) Estimate the required sensitivity $\delta L \propto L \times h$ to measure such a strain amplitude with an apparatus that compares the relative position δL of two freely falling test masses separated by a distance L of one kilometer. Compare this sensitivity to the size of a typical atom, set by the Bohr radius, $a_0 \approx 5 \times 10^{-9}$ cm and the size of a typical nucleus $1\text{fm} = 10^{-13}$ cm. Do you think it is feasible to reach the required sensitivity in this way?
- (3) An alternative approach to measuring the relative motion of test masses is to use laser interferometry. Consider a laser interferometer setup with two orthogonal laser beams, each traveling along arms of length $L = 4\text{km}$, where the beams can reflect N times between mirrors before being recombined and analyzed for interference. Approximate the number of round trips N that the laser beam ($\lambda \approx 10^{-4}$ cm) needs to make in each arm to achieve an accumulated phase shift $\delta\phi \approx N \left(\frac{2\pi}{\lambda}\right) \delta L$ of approximately 10^{-9} , which is within the range of current technological capabilities.
- (4) The GW150914 event was the first detection of gravitational waves, originating from a binary black hole merger. The system consisted of two black holes with masses $M_1 = 36 M_{\odot}$ and $M_2 = 29 M_{\odot}$. Compute the chirp mass and gravitational wave frequency $f(t)$ during the inspiral of this event (assuming $f(0) = f_0$) for this event and explain why the corresponding result is called "chirp signal".
- (5) After the merger, the inferred final black hole mass was $M_f = 62 M_{\odot}$. Compare the radiated energy in this event to the total energy output of the sun over its entire lifetime.