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§ 2014: Full member of DKPI, supervisor Daniel Grumiller.

§ 2016, 2017: Research stays at University of Helsinki and Barcelona.

§ 2018: Graduation with thesis on numerical relativity and holography.

§ 2018-2020: Postdoc at Utrecht and Leiden University, holographic QCD.

§ 2019: Invited lecture at DKPI Summer School in Zwettl.

§ since 2020: Postdoc at Goethe University, Theoretical Astrophysics.

§ since 2021: Member of the Hessian research cluster ELEMENTS.

§ 2020-2022: Main Campus Educator Program, scientific group leadership.

§ since 2022: Member of the Collaborative Research Center for
Strong-Interaction Matter under Extreme Conditions.
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Neutron Stars
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What we (don’t) know about QCD
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Equation of State and Mass-Radius Relation

Relates properties of dense matter to properties of neutron stars.

p “ ppe, . . .q
Einstein Eq.

ÝÝÝÝÝÝÑ MpRq

Constrained by theory and neutron star observations:

§ Causality & thermodynamic stability: 0 ă c2s “
dp
de

ă 1

§ Direct mass and radius measurements: MTOV Á 2Md, 11 km À R À 14 km

§ First GW detection from a BNS merger GW170817: Λ̃ À 720
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Sound Speed Inside Neutron Stars

§ Adiabatic speed of sound provides a measure for the stiffness of matter

c2s “

ˆ

Bp

Be

˙

s

. (1)

§ Relevant for neutron star properties: stiff (soft) matter has large (small)
sound speed and results in large (small) maximal mass and radius.

§ Difficult open problem: What is c2s pnq in QCD at neutron star densities?
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§ Light Stars: stiff core, soft outer layer.

§ Typical Stars: large stiff core.

§ Massive Stars: soft core, stiff outer layer. CE, Rezzolla 2207.04417 (ApJL);

Outreach: idw award for science communication, featured in Frankfurter Allgemeine Zeitung, etc.
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Chirp Mass and Binary Tidal Deformability

§ Chirp mass can be extracted accurately from inspiral GW strain frequency

dfGW
dt

“
96

5
π8{3M5{3

chirpf
11{3
GW , Mchirp “

pM1M2q
3{5

pM1 ` M2q1{5
.

Cutler, Flanagan arXiv:gr-qc/9402014 (PRD)

§ Binary tidal deformability encodes EOS properties via Λi

Λ̃ “
16

13

p12M2 ` M1qM4
1Λ1 ` p12M1 ` M2qM4

2Λ2

pM1 ` M2q
5 , Λi “ 2

3
k2 pRi{Mi q

5 .

§ GW170817 “best” event so far:

Mchirp “ 1.188`0.004
´0.002Md, q “ M2{M1 ą 0.7, Λ̃ À 720 .

LIGO/Virgo: arXiv:1805.11579 (PRX)
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Binary Tidal Deformability

More than 108 binary configurations with M1,2 P r0.5Md,MTOVs.

Λ̃minpmaxq “ a ` bMc
chirp ÝÑ Λ̃min

1.186 P r236, 301s , MTOV ą r2.18, 2.52s Md .
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A Holographic Approach to Dense QCD Matter
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V-QCD Hybrid Equation of State

§ Hybrid EOSs: nuclear theory model at lowest densities + V-QCD model
for dense baryonic and quark matter at large densities.

§ By construction consistent with nuclear theory and perturbative QCD.

§ Predicts strong first-order deconfinement phase transition.

§ Provides estimates for the QCD critical point.
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Demircik, CE, Järvinen 2112.12157 (PRX);
see also CE, Järvinen, Nijs, van der Schee 1908.03213 (PRD);

Jokela, Järvinen, Nijs, Remes 2006.01141 (JHEP);
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Hot, Warm and Cold Quarks
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Tootle, CE, Topolski, Demircik, Järvinen, Rezzolla 2205.05691 (SciPost)
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Waveforms and Frequency Spectra

§ Small impact of quark matter on post-merger frequencies.

§ Phase transition triggered collapse (PTTC) leads to shorter lifetime of the
hyper massive neutron star (HMNS).

h22
+ × 1022, 40 Mpc 2

√
f h̃(f ) [Hz−1/2]

PTTC

Tootle, CE, Topolski, Demircik, Järvinen, Rezzolla 2205.05691 (SciPost) 18/19



Thank you DKPI!

I would like to thank:

§ the FWF and the ÖAW for funding the DKPI,

§ Daniel Grumiller and Anton Rebhan for their mentorship,

§ Andreas Ipp, Andrea Smith-Stachowski, Simone Krüger and Ingrid
Unger for the excellent coordination and organization of the
program,

§ all other faculty members and fellow DKPI students for providing a
wonderful scientific environment.
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Power Spectral Density

Post-merger power spectral density (PSD) has typical three peak structure

h̃pf q ”

b

|h̃`pf q|2`|h̃ˆpf q|2

2
, h̃`,ˆpf q ”

ş

h`,ˆptqe´i2πftdt .

Characteristic frequencies f1, f2, f3 encode information about EOS.
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Holographic Veneziano QCD

Holographic bottom-up model for QCD with many parameters that are tuned
to mimic QCD and that are constrained by lattice QCD data.

Järvinen, Kiritsis 1112.1261 (JHEP)

Gluons: Improved holographic QCD (Einstein-dilaton gravity)

Sg “ N2
cM

3
ş

d5x
?

´g
”

R ´ 4
3

pBλq2

λ2 ` Vg pλq

ı

λ ” eϕ Ø TrF 2 sources the ’t Hooft coupling in YM theory
Gürsoy, Kiritsis 0707.1324 (JHEP); Gürsoy, Kiritsis, Nitti 0707.1349 (JHEP)

Quarks: Tachyonic Dirac-Born-Infeld (DBI) action

Sf “ ´NfNcM
3

ş

d5xVf 0pλqe´τ2a

´det rgab ` κpλqBaτBbτ ` wpλqFabs

Frt “ Φ1
prq , Φp0q “ µ ,

tachyon τ Ø q̄q controls chiral symmetry breaking.
Bigazzi et al. 0505140 (JHEP); Casero et al. 0702155 (Nucl.Phys.B)

Baryons: homogeneous solution of non-Abelian DBI + Cern–Simons action.
Ishii, Järvinen, Nijs 1903.06169 (JHEP)

Veneziano limit: Nc Ñ 8 and Nf Ñ 8 with Nf {Nc “ Op1q fixed
Järvinen, Kiritsis 1112.1261 (JHEP)
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Quark Abundance
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Movie by Konrad Topolski with data from 2205.05691 (SciPost).
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Phase Diagram
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Hot V-QCD Hybrid Equation of State

§ Low density part: Hemple-Schaffner-Bielich model (HS)DD2 + Particle
Data Group (PDG) mesons. Hempel, Schaffner-Bielich 0911.4073 (Nucl.Phys.A);

Zyla et al. (Particle Data Group 2020)

.§ (HS)DD2 too stiff around ns , replace with APR model.
Akmal, Pandharipande, Ravenhall 9804027 (PRC)

§ Van der Waals construction to extend cold V-QCD baryons to finite-T .
Vovchenko, Motornenko, Alba, Gorenstein, Satarov, Stoecker 1707.09215 (PRC)

§ Mixed baryon and quark matter phase from mech. and chem. equilibrium:

XNMpT , np1q

b ,Y p1q
q q “ XQMpT , np2q

b ,Y p2q
q q , X “ tp, µb, µleu .
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V-QCD Critical Point

Estimates for the critical point:

110 MeV À Tc À 130 MeV
0.3 ns À nc À 0.6 ns

model nbc
ns

µbc
MeV

Tc
MeV

soft 0.46 485 128
interm. 0.62 575 118
stiff 0.32 565 112

(Same ballpark as seen in Nicolas talk.)
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Density Profile

Demircik, CE, Järvinen 2009.10731 (ApJL)
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Mass-Radius Relation of Rotating Stars

Universal Ratio: Mmax

MTOV
« 1.2

Breu, Rezzolla arXiv:1601.06083 (MNRAS)
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Mass-Radius Relation of Rotating Stars

Universal Ratio: Mmax

MTOV
« 1.2

Breu, Rezzolla arXiv:1601.06083 (MNRAS)
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Mass-Radius Relation of Rotating Stars

Universal Ratio: Mmax

MTOV
« 1.2

Breu, Rezzolla arXiv:1601.06083 (MNRAS)
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Quasi-Universal Relations for Rotating Stars

Mmax

MTOV
“ 1.255`0.047

´0.040,
`

1.244`0.050
´0.039, 1.203
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Quasi-Universality of Neutron Star Oblateness

Oblateness: ratio of polar radius (Rp) and equatorial radius (Re).

Rp

Re
“ 1 ´ b2 pj{jKepq

2 , b2 “ 0.41`0.02
´0.02

´

0.40`0.02
´0.02

¯

. (3)

Lower bound depends only (mildly) on crust: 0.6 À
Rp

Re
ď 1 .

Musolino, CE, Rezzolla arXiv:2307.03225
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