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2014: Full member of DKPI, supervisor Daniel Grumiller.

2016, 2017: Research stays at University of Helsinki and Barcelona.
2018: Graduation with thesis on numerical relativity and holography.
2018-2020: Postdoc at Utrecht and Leiden University, holographic QCD.
2019: Invited lecture at DKPI Summer School in Zwettl.

since 2020: Postdoc at Goethe University, Theoretical Astrophysics.
since 2021: Member of the Hessian research cluster ELEMENTS.
2020-2022: Main Campus Educator Program, scientific group leadership.

since 2022: Member of the Collaborative Research Center for
Strong-Interaction Matter under Extreme Conditions.
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Neutron Stars
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What we (don't) know about QCD
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Equation of State and Mass-Radius Relation

Relates properties of dense matter to properties of neutron stars.

pMeV /]

p=ple...)

Constrained by theory and neutron star observations:

Einstein

Eq.

M(R)

» Causality & thermodynamic stability: 0 < c2 = dp g

de

> Direct mass and radius measurements: Mtoy 2 2 Mg, 11km < R < 14km
» First GW detection from a BNS merger GW170817: A < 720
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Sound Speed Inside Neutron Stars

> Adiabatic speed of sound provides a measure for the stiffness of matter

@ - (gi) . (1)

» Relevant for neutron star properties: stiff (soft) matter has large (small)
sound speed and results in large (small) maximal mass and radius.

» Difficult open problem: What is cZ(n) in QCD at neutron star densities?
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> Light Stars: stiff core, soft outer layer.
> Typical Stars: large stiff core.

» Massive Stars: soft core, stiff outer layer. CE, Rezzolla 2207.04417 (ApJL);
Outreach: idw award for science communication, featured in Frankfurter Allgemeine Zeitung, etc.
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Chirp Mass and Binary Tidal Deformability

Normalized amplitude
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> Chirp mass can be extracted accurately from inspiral GW strain frequency

dfew 96 g3, 53 ,11/3 o (MyMp)*®
de 5 Mefow' s Menin = g7 s

Cutler, Flanagan arXiv:gr-qc/9402014 (PRD)
> Binary tidal deformability encodes EOS properties via A;
16 (12Ma + My) MiA1 + (12My + My) M3 A,

A= :
13 (My + M>)°

Ni =2k (Ri/M;)° .

» GW170817 “best” event so far:
Menirp = 1.1881 3003 Me, g = Ma/My > 0.7, A < 720.

LIGO/Virgo: arXiv:1805.11579 (PRX)
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Binary Tidal Deformability

More than 10® binary configurations with Mi » € [0.5Mg, Mrov].

Armin(max) = @+ b My — A'ig6 € [236,301], Mrov > [2.18,2.52] Mg .
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CE, Rezzolla 2209.08101 (MNRAS), see also Altiparmak, CE, Rezzolla 2203.14974 (ApJL)
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A Holographic Approach to Dense QCD Matter
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Pressure [MeV /fm?]

V-QCD Hybrid Equation of State

> Hybrid EOSs: nuclear theory model at lowest densities + V-QCD model
for dense baryonic and quark matter at large densities.

> By construction consistent with nuclear theory and perturbative QCD.
> Predicts strong first-order deconfinement phase transition.

> Provides estimates for the QCD critical point.
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Demircik, CE, Jarvinen 2112.12157 (PRX);
see also CE, Jarvinen, Nijs, van der Schee 1908.03213 (PRD);

Jokela, Jarvinen, Nijs, Remes 2006.01141 (JHEP);
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Hot, and Cold Quarks
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Tootle, CE, Topolski, Demircik, Jarvinen, Rezzolla 2205.05691 (SciPost)
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Waveforms and Frequency Spectra

» Small impact of quark matter on post-merger frequencies.
» Phase transition triggered collapse (PTTC) leads to shorter lifetime of the
hyper massive neutron star (HMNS).
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Thank you DKPI!

| would like to thank:
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the FWF and the OAW for funding the DKPI,
Daniel Grumiller and Anton Rebhan for their mentorship,

Andreas Ipp, Andrea Smith-Stachowski, Simone Kriiger and Ingrid
Unger for the excellent coordination and organization of the
program,

all other faculty members and fellow DKPI students for providing a
wonderful scientific environment.
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Post-merger power spectral density (PSD) has typical three peak structure

}’,(f) =4/ \71+(f)|2';|l~7><(f)\2 ’ F7+,><(f) - Sh+7x(t)eii2ﬂ-ftdt.

Characteristic frequencies f1, f», f3 encode information about EOS.
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Holographic Veneziano QCD

Holographic bottom-up model for QCD with many parameters that are tuned
to mimic QCD and that are constrained by lattice QCD data.
Jarvinen, Kiritsis 1112.1261 (JHEP)

Gluons: Improved holographic QCD (Einstein-dilaton gravity)
S, = N2M3Sd5x1/7[ YRV vg(A)]

X\ = e? & TrF? sources the 't Hooft coupling in YM theory
Giirsoy, Kiritsis 0707.1324 (JHEP); Giirsoy, Kiritsis, Nitti 0707.1349 (JHEP)

Quarks: Tachyonic Dirac-Born-Infeld (DBI) action
St = —NeNeM? § dx Vig(N)e ™™ «/—det [gap + (N 227067 + w(N)Fap]
Fr=®'(r), ®(0)=upu,

tachyon 7 < gq controls chiral symmetry breaking.
Bigazzi et al. 0505140 (JHEP); Casero et al. 0702155 (Nucl.Phys.B)

Baryons: homogeneous solution of non-Abelian DBl + Cern—Simons action.
Ishii, Jarvinen, Nijs 1903.06169 (JHEP)

Veneziano limit: ~ Nc — 00 and N¢ — o0 with Nf/Ne = O(1) fixed
Jarvinen, Kiritsis 1112.1261 (JHEP)
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Movie by Konrad Topolski with data from 2205.05691 (SciPost).
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Phase Diagram
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Tootle, CE, Topolski, Demircik, Jarvinen, Rezzolla 2205.05691 (SciPost)
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Hot V-QCD Hybrid Equation of State

> Low density part: Hemple-Schaffner-Bielich model (HS)DD2 + Particle
Data Group (PDG) mesons. Hempel, Schaffner-Bielich 0911.4073 (Nucl.Phys.A);
Zyla et al. (Particle Data Group 2020)
(HS)DD2 too stiff around ns, replace with APR model.
Akmal, Pandharipande, Ravenhall 9804027 (PRC)

v

> Van der Waals construction to extend cold V-QCD baryons to finite-T.
Vovchenko, Motornenko, Alba, Gorenstein, Satarov, Stoecker 1707.09215 (PRC)

> Mixed baryon and quark matter phase from mech. and chem. equilibrium:

Xom (T, YD) = Xom(T, 02, YY), X = {p, o, e} -

q
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Demircik, CE, Jarvinen 2112.12157 (PRX)
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V-QCD Ciritical Point
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Mass-Radius Relation of Rotating Stars

Universal Ratio: fmax ~ 1.2
TOV
Breu, Rezzolla arXiv:1601.06083 (MNRAS)
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Mass-Radius Relation of Rotating Stars

Universal Ratio: frmex ~ 1.2
TOV
Breu, Rezzolla arXiv:1601.06083 (MNRAS)
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Mass-Radius Relation of Rotating Stars
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Quasi-Universal Relations for Rotating Stars
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Quasi-Universality of Neutron Star Oblateness

Oblateness: ratio of polar radius (R,) and equatorial radius (Re).
R, L.
=1 b (ljep)’ s b2 = 0417555 (0.407553) . (3)

Lower bound depends only (mildly) on crust: 0.6 < % <1.
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