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5 Milliarden Jahre Später
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M “ 8 ´ 25Md
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Dichteprofil

Demircik, CE, Järvinen arXiv:2009.10731 (ApJL)
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2. Gravitation
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Newton’s Gravitation (1687)

r

m1 m2
F1 F2

r2F1 = F2 = G
m1 x m2
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Einsteins Allgemeine Relativitätstheorie (1915)

Rµν ´
1

2
Rgµν “ 8πGNTµν .

Verteilung von Materie bestimmt wie sich Raumzeit krümmt, Krümmung
der Raumzeit bestimmt wie sich Materie verteilt.
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Schwarze Löcher

Karl Schwarzschild

Event Horizon Telescope
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Gravitationswellen

LIGO: Laser Interferometer Gravitational-Wave Observatory
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Gravitationswellen

LIGO: Laser Interferometer Gravitational-Wave Observatory
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Hulse-Taylor Binärpulsar: PSR B1913+16
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Hulse-Taylor Binärpulsar: PSR B1913+16
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3. Stark Wechselwirkende
Materie

16/43



Standard Model of Elementary Particles
three generations of matter

(fermions)
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Das QCD Phasen Diagram

Theorie der Starken Wechselwirkung: Quantenchromodynamik (QCD)
Abstoßung/Anziehung durch Gluonenaustausch farbgeladener Quarks.
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Quark
Anti-Quark
Gluon
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Was man (nicht) über QCD weiss

  
Quark chemical

potential
~ 310 MeV

Temperature

~ 170 MeV
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matter
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4. Zustandsgleichung
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Equation of State

Relates properties of dense matter to properties of neutron stars.

p “ ppe, . . .q
Einstein Eq.

ÝÝÝÝÝÝÑ MpRq

Constrained by theory and neutron star observations:

§ Causality & thermodynamic stability: 0 ă c2s “
dp
de

ă 1

§ Direct mass and radius measurements: MTOV Á 2Md, 11 km À R À 14 km

§ First GW detection from a BNS merger GW170817: Λ̃ À 720
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Black-Widow Binary Pulsar PSR J0952-0607

§ Massereichster bekannter NS: M “ 2.35 ˘ 0.17Md (hohe Ungenauigkeit!)

Romani, Kandel, Filippenko, Brink, Zheng arXiv:2207.05124 (ApJL),

PSR J2215+5135 (M “ 2.27`0.17
´0.15 Md) Linares, Shahbaz, Casares arXiv:1805.08799 (ApJ)
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Schallgeschwindigkeit in Neutronensternmaterie

§ Die Schallgeschwindigkeit ist ein Mass für die Steifigkeit von Materie:

hohe (geringe) Schallgeschwindikeit
=

hoher (geringer) Wiederstand gegen Gravitationsanziehung

c2s “

ˆ

Bp

Be

˙

s

. (1)
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§ Leichte Sterne: harter Kern, weiche Hülle.

§ Typische Sterne: großer harter Kern.

§ Massive Sterne: weicher Kern, harte Hülle.
CE, Rezzolla arXiv:2207.04417 (ApJL)
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Masse-Radius Beziehung Rotierender Sterne

Universelles Verhältnis: Mmax

MTOV
« 1.2

Breu, Rezzolla arXiv:1601.06083 (MNRAS)
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5. Neutronensternmerger
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Neutronensternkollisionen

§ Quelle für Gravitationswellen.

§ Information über dichte Kernmaterie in GW and EM Signal.

§ Wahrscheinlicher Ursprung von Short Gamma-Ray Bursts

§ und schwerer Elemente wie Gold, Platinum, Uranium, . . .

Picture: Baiotti, Rezzola 1607.03540 (Rept.Prog.Phys.)
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GW170817

§ Seen on multiple wavelengths and time-scales: GW, optical,X-ray,γ,UV,IR

d « 40Mpc , Mchirp “
pM1M2q3{5

pM1`M2q1{5 “ 1.188`0.004
´0.002 Md , q “ M2{M1 ą 0.73 .

§ Inspiral (but no post-merger) waveform: Λ̃ À 720
LIGO/Virgo arXiv:1805.11579 (PRX)

LIGO/Virgo arXiv:1710.05832 (PRL), arXiv:1710.05834 (ApJL)
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Movie by Konrad Topolski with data from arXiv:2205.05691 (SciPost).
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§ Inspiral: f « 100s Hz.

§ Post-Merger: f « kHz.

§ Black Hole: exponentieller ”ring-down” f Ñ 0.
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Inspiral: Chirp Mass and Binary Tidal Deformability

§ Chirp mass can be extracted accurately from inspiral GW strain frequency

Mchirp “
pM1M2q

3{5

pM1 ` M2q1{5
“

ˆ

5

96
π´8{3f ´11{3 9f

˙3{5

.

§ Binary tidal deformability encodes EOS properties via Λi

Λ̃ “
16

13

p12M2 ` M1qM4
1Λ1 ` p12M1 ` M2qM4

2Λ2

pM1 ` M2q
5 , Λi “ 2

3
k2 pRi{Mi q

5 .

§ GW170817 only “good” event so far:

Mchirp “ 1.188`0.004
´0.002Md, q “ M2{M1 ą 0.7, Λ̃ À 720 .
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Binary Tidal Deformability

§ More than 108 binary configurations with M1,2 P r0.5Md,MTOVs.

Λ̃minpmaxq “ a ` bMc
chirp ÝÑ Λ̃1.186 “ 485`225

´211 ,

a “ ´50p´20q, b “ 500p1800q, c “ ´4.5p´5.0q .
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Post-Merger: Power Spectral Density

Post-merger power spectral density (PSD) has typical three peak structure

h̃pf q ”

b

|h̃`pf q|2`|h̃ˆpf q|2

2
, h̃`,ˆpf q ”

ş

h`,ˆptqe´i2πftdt .

Characteristic frequencies f1, f2, f3 encode information about EOS.
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Mechanical Toy Model

Takami, Rezzolla, Baiotti arXiv:1412.3240
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6. Beispiel
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Phasendiagram

Bescheibung dichter Kern- und Quarkmaterie mit holographischer QCD.
YouTube: https://www.youtube.com/watch?v=Lv3AJtIaRl0

Demircik, CE, Järvinen arXiv:2112.12157 (PRX)
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Zustandsgleichung und Masse-Radius Beziehung

§ Zustandsgleichung mit Phasenübergang zwischen Kern- und
Quarkmaterie.

§ Eingeschränkt durch Kernphysik/QCD und Neutronensternmessungen.
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(PRX)
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Tootle, CE, Topolski, Demircik, Järvinen, Rezzolla arXiv:2205.05691 (SciPost)
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Tootle, CE, Topolski, Demircik, Järvinen, Rezzolla arXiv:2205.05691 (SciPost)
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Hot, Warm and Cold Quarks
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Waveforms and Frequency Spectra

§ Small impact of quark matter on post-merger frequencies.

§ Phase transition triggered collapse (PTTC) leads to shorter lifetime of the
hyper massive neutron star (HMNS).

h22
+ × 1022, 40 Mpc 2

√
f h̃(f ) [Hz−1/2]

Tootle, CE, Topolski, Demircik, Järvinen, Rezzolla arXiv:2205.05691 (SciPost) 42/43
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Zusammenfasung

§ Viele Eigenschaften dichter Kernmaterie sind zur Zeit unbekannt:
QCD Phasendiagram, Zustandsgleichung, . . . ?

§ Messungen von Massen und Radien von Neutronensternen ermöglichen es
die Ungewissheit der Zustandlgleichung einzuschränken.

§ Gravitationswellenmessungen von Neutronensternmergern erlauben
Einblicke in den dichten und heißen Teil des QCD Phasendiagrams.

§ Mit numerische Simulationen dieser Ereignisse kann man Vorhersagen für
diese Gravitationswellen und deren Spektrum machen.

§ Beispiel: holographische Modell für das QCD Phasendiagram und die
Zustandsgleichung.

§ Es kann kalte, warme und heiße Quarkmaterie in Neutronenstern-
kollisionen entstehen.

§ Kleiner Einfluss auf die Post-merger Frequenz aber früherer Kollaps zu
einen Schwarzen Loch.

43/43


