Listening to the long ringdown: a novel way to
pinpoint the EOS in neutron-star cores

Christian Ecker

GOETHE @,
UNIVERSITAT CRC-TR2m

Strong-interaction matter
FRANKFURT AM MAIN under extreme conditions

UFG

DPG Meeting
Gottingen, 1 April 2025

Based on Nature Commun. 16 (2025) 1, 1320 (2403.03246) with

Tyler Gorda, Aleksi Kurkela and Luciano Rezzolla

1/12



Motivation

» Goal: Infer QCD phase diagram and the equation of state (EQOS).
» Approach: Synthesis of EOS theory, simulation and observation.

» This talk: Using relation between gravitational wave energy and
angular momentum (long-ringdown slope) as observable.
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Correlating Post-Merger GWs with EOS Properties

> Spectral features (faw, f2, etc.) of post-merger GWs correlate with EOS.
many works: ...; Takami, Rezzolla, Baiotti 1412.3240 (PRD); Bauswein, Stergioulas
1502.03176 (PRD); Rezzolla, Takami 1604.00246 (PRD); De Pietri et al 1910.04036 (PRD);

Kiuchi et al 2211.07637 (PRL); Breschi et al 2110.06957 (PRL); ...
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> Mechanism: stiff EOS give large radii, slow rotation and low frequencies.

> Not observed so far, but expected to be seen by third-generation detectors:

Cosmic Explorer 4 Einstein Telescope ~ 180 BNSs/year (SNR>8).
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see, e.g., Evans et al 2109.09882 (Cosmic Explorer technical report)
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Generic EOS Approach

So far: EOS-GW correlation studies use few “traditional” EOS models.
However, generic EOS parametrizations reveal large freedom.

Idea: Large ensemble (> 10°) of generic EOSs that are constrained by
astro, nuclear theory and perturbative QCD and cover allowed space.

EOS ensemble: Gaussian process regression method conditioned with
Bayesian likelihoods from dense matter theory and astro measurements.
Gorda, Komoltsev, Kurkela 2204.11877 (ApJ)
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Golden EOS Selection

» Too many possibilities to simulate: smart selection recipe is needed.

» Three variables (Mrov,Crov, Inprov) to characterize the high-density
part of the EOS and one (Ryi.4) to break degeneracy at low densities.

> Principle component analysis: 4D distribution essentially 3D-triangular.

» Six “golden EOSs”: A-E at corners of 68% contours and F in centre.
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Golden EOSs and Mass-Radius Relations

> Six EOS models manageable, but BNS parameter space still huge: fix

Mehirp = 1.18 Mg, but three different mass-ratios g = % =1,0.85,0.7.

> Add T-dependence via simple gamma-law approximation with fixed
I¢en = 1.75, but analysis remains robust when changing to I'th, = 1.5,2.0.
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Emitted GW Energy and Angular Momentum

> Time evolution of GW strain components hy, hx from simulation.

> Emitted energy and angular momentum from post-processing
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see, e.g., Bishop, Rezzolla 1606.02532 (Living Reviews in Relativity)

dt’ (h+hx - i1+hx) .
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> Useful to normalise with EGW := Ecw (tmer) and JGtw = Jow (tmer).

T T T T 20— T T T
3l soft EOS (A) ]
stiff EOS (B) 15
Sr

merger

Eow/E&y
L\
;

merger

L L

0 10
t — timer [ms]

20

mer

Jaw/ I8
Q —
ot o

o
o

10

t — timer [ms]

20

5th-order post-Newtonian Taylor-T2 mode with A = 580 of PyCBC library, Biwer et al 1807.10312
(Publ.Astron.Soc.Pac.)
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Long Ringdown

» Post-merger period where Egw (t) and Jow(t) are linearly related.
> Long-ringdown slope numerically close to GW frequency

dEcw  Ecw R+ R . 1 hyhy — hyhy

3 - . - 3 GW = —
dlaw  Jaw  hihx — hihy 2m K+
> Identity for simple quadrupole system with £ = 2, m = 2 deformation:

hy(t)occos((t)), hx(t)csin(p(t)), Eaw/Jow = faw/(27).
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Robustness

> Waveform dominated by the large-scale deformations of post-merger
remnant, only weak influence of small-scale features.

> Essentially no difference between simulations with 200 — 400 m resolution.
> Also insensitive to approximate thermal effects for 'y, = 1.5 — 2.

> However, sensitive to BNS parameters such as chirp mass, but sufficiently
different EOSs remain distinguishable.
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Correlations

> Slope correlates with maximum neutron star pressure and number density.
> Bilinear fit of simulation data constrains EOS at highest (TOV) densities
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Impact of Slope Measurement

> Mock measurement: assume measured values for the slope dEGw/dew
and £, with +£4% measurement uncertainty.

> Correlation gives new evidence to update EOS constraints at all densities.
> Slightly improvement compared to measuring just f,.
> Pearson-correlation coefficients slightly larger for dEGw/dwa than for f,

r(dEGw/dJGVv, PTOV) = 0.877 vs I‘(fQ, PTOV) =0.792.
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Summary

Third-generation GW observatories are expected to see numerous
BNS post-merger waveforms at high SNR.

Looking for EOS-GW correlations using large generic EOS set.
Principle component analysis to single out few golden EQSs.

Novel correlations between long ringdown slope dEGW/dJAGW and
(prov, nTov) constrain the EOS at maximum NS core densities.

Slope dEGw/dfGW simple to compute from the waveform.

Correlation + Bayes theorem: EOS (MR) constraints at all densities.

Improvement compared to measuring f, only.
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Impact of Resolution
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Impact of Gamma
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Tabulated Models
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