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Density Profile

Demircik, CE, Järvinen 2009.10731 (ApJL)
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Speed of Sound

c2s “

ˆ

dp

de

˙

s

, 0 ď c2s ď 1 .
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Equation of State

Relates properties of dense matter to properties of neutron stars.

p “ ppe, . . .q
Einstein Eq.

ÝÝÝÝÝÝÑ MpRq

Constrained by theory and neutron star observations:

§ Causality & thermodynamic stability: 0 ă c2s “
dp
de

ă 1

§ Direct mass and radius measurements: MTOV Á 2Md, 11 km À R À 14 km

§ First GW detection from a BNS merger GW170817: Λ̃ À 720
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Agnostic Approach

§ Impose boundary conditions from nuclear theory and perturbative QCD.
Hebeler, Lattimer, Pethick, Schwenk 1303.4662 (ApJ);

Fraga, Kurkela, Vuorinen 1311.5154 (ApJL)

§ Connect with random, but causal and thermodynamically consistent EOS.

c2s pµq“
pµi`1´µqc2s,i `pµ´µi qc

2
s,i`1

µi`1´µi
, npµq“n1 e

şµ
µ1

dµ1

µ1c2s pµ1q , ppµq“p1`
şµ
µ1

dµ1npµ1q .

Annala, Gorda, Kurkela, Nättilä, Vuorinen 1903.09121 (Nature Physics)

§ Constrain with pulsar and binary neutron star observations.
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Sampling the EOS

§ Statistics of millions of EOS models that pass theory+astro constraints.

§ Mass bound of generic (sub-conformal) models: MTOV ă 3 p2.1qMd.

§ Radius estimates (+ error bars) for typical stars:

R1.4 “ 12.42`0.52
´0.99 km , R2.0 “ 12.11`1.11

´1.23 km p95% confidenceq .

§ Remarkable agreement with RminpMq from threshold mass calculations.

Koeppel, Rezzolla 1901.09977 (ApJL)
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Sound Speed in Dense Matter
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§ Local maximum c2s ą 1{3 below maximal central densities of TOV stars

ec,TOV “ 1064`399
´244 MeV{fm3

p95% confidenceq .

§ c2s ď 1{3 at all densities possible, but only a small fraction (0.03%).

§ Lower bound c2s Á 0.2 of sub-conformal models around e « 400MeV/fm3.
Altiparmak, CE, Rezzolla 2203.14974 (ApJL)
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Several Different Possibilities
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Monotonic Sound Speed

§ Separate calculation with more than 107 models.

§ Monotonic by construction, but no lower mass bound.

§ Can only reach MTOV ă 2Md.

102 103 104

e [MeV/fm3]

0.0

0.2

0.4

0.6

0.8

1.0

c2 s

ec,TOV constrained

10−4 10−3 10−2 0.02 0.04 0.06 0.08 0.1 0.5 1

PDF

10 11 12 13

R [km]

1.0

1.2

1.4

1.6

1.8

2.0

2.2

M
[ M
�

]

constrained

10−4 10−3 10−2 0.1 0.2 0.3 0.4 0.5 1

PDF

Altiparmak, CE, Rezzolla 2203.14974 (ApJL)

10/21



Fewer Possibilities
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Sound Speed Inside Neutron Stars
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Median (red) and 95% intervals (black) can be accurately described by

c2s pxq “

´

αeβx
2

` γeδpx´ϵq
2
¯

r1 ´ tanh pζx ´ ηqs , x ” r{R .

§ Light Stars: stiff core, soft outer layer.

§ Typical Stars: large stiff core.

§ Massive Stars: soft core, stiff outer layer.
CE, Rezzolla 2207.04417 (ApJL)
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Chirp Mass and Binary Tidal Deformability

§ Chirp mass can be extracted accurately from inspiral GW strain frequency

Mchirp “
pM1M2q

3{5

pM1 ` M2q1{5
“

ˆ

5

96
π´8{3f ´11{3 9f

˙3{5

.

§ Binary tidal deformability encodes EOS properties via Λi

Λ̃ “
16

13

p12M2 ` M1qM4
1Λ1 ` p12M1 ` M2qM4

2Λ2

pM1 ` M2q
5 , Λi “ 2

3
k2 pRi{Mi q

5 .

§ GW170817 only “good” event so far:

Mchirp “ 1.188`0.004
´0.002Md, q “ M2{M1 ą 0.7, Λ̃ À 720 .
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Binary Tidal Deformability

§ More than 108 binary configurations with M1,2 P r0.5Md,MTOVs.

Λ̃minpmaxq “ a ` bMc
chirp ÝÑ Λ̃1.186 “ 485`225

´211 ,

a “ ´50p´20q, b “ 500p1800q, c “ ´4.5p´5.0q .
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Black-Widow Binary Pulsar PSR J0952-0607

§ Most massive NS known: M “ 2.35 ˘ 0.17Md, but large uncertainties!
Romani, Kandel, Filippenko, Brink, Zheng 2207.05124 (ApJL)

also: PSR J2215+5135 (M “ 2.27`0.17
´0.15 Md) Linares, Shahbaz, Casares 1805.08799 (ApJ)

§ Large mass constraints dominate over radius constraints by NICER.
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Sound Speed and Conformal Anomaly

∆ :“
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3
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Fujimoto, Fukushima, McLerran, Praszalowicz 2207.06753

Marczenko, McLerran, Redlich, Sasaki 2207.13059
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Impact of QCD
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Quasi-Universality of the Pressure Profile

ppxq

pc
“ eαx

2

` eα
cosβx ´ 1

cosβ ´ 1
, x ” r{R .
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Puzzle

§ Is there a micro-physical model that can explain the agnostic sound-speed
profile inside neutron stars?
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Summary

This talk:

§ Basic properties (+ error-bars) of the cold EOS and neutron stars can be
estimated from constraint sampling: ppeq ,MpRq , c2s , Λ̃pMchirpq , . . .

§ Using r{R allows to sample the NS interior: c2s pr{Rq, ∆pr{Rq, . . .

§ Light stars have a stiff core and soft outer layers, massive stars have soft
cores and stiff outer layers.

§ Can provide additional constraints for micro-physical EOS model building
and help to identify quasi-universal relations.

Ongoing work:

§ Comparison of full Bayesian analysis to simple cutoff approach (this talk).
Yiang, CE, Rezzolla (online soon)

§ Model specific sampling: narrow V-QCD parameter space with astro, . . .
CE, Jokela, Järvinen (in progress)

§ Sampling BNS-observables: threshold mass, post-merger frequencies, etc.
CE, Gorda, Rezzolla (in progress)
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Without Astro-Constraints
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Sub-Conformal Models
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Different Number of Segments

§ Sound speed and MR when using 3,4,5 and 7 segments.

§ Features at neutron star densities are robust.
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