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Speed of Sound
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Equation of State

Relates properties of dense matter to properties of neutron stars.
Einstein Eq.
p=ple,...) S Ry

Constrained by theory and neutron star observations:
» Causality & thermodynamic stability: 0 < c2 = % <1

> Direct mass and radius measurements: Mtoy 2 2 Mg, 11km < R < 14km
» First GW detection from a BNS merger GW170817: A < 720
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Relates properties of dense matter to properties of neutron stars.

Equation of State

p=ple..)

Einstein Eq.
_—

M(R)

Constrained by theory and neutron star observations:

Pressure [MeV /fm?]

» Causality & thermodynamic stability: 0 < c2 =

dp

de<1

> Direct mass and radius measurements: Mtoy 2 2 Mg, 11km < R < 14km
» First GW detection from a BNS merger GW170817: A < 720
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p[MeV/fm?]

Agnostic Approach

Impose boundary conditions from nuclear theory and perturbative QCD.
Hebeler, Lattimer, Pethick, Schwenk 1303.4662 (ApJ);
Fraga, Kurkela, Vuorinen 1311.5154 (ApJL)
Connect with random, but causal and thermodynamically consistent EQS.
2 2 H dp’
wig1—r)es i+ (n—pi)es ; Sy =72
Csz(”):( — )uf:¢-1—u; EASHES S0P B S (V) s P()=p1+{j}, du'n(p') .
Annala, Gorda, Kurkela, Nattild, Vuorinen 1903.09121 (Nature Physics)
Constrain with pulsar and binary neutron star observations.
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Lots of recent work:
...; Annala, Gorda, Kurkela, Nattila, Vuorinen 2105.05132 (PRX);
Komoltsev, Kurkela 2111.05350 (PRL); Altiparmak, CE, Rezzolla (ApJL) 2203.14974;

Gorda, Komoltsev, Kurkela 2204.11877; CE, Rezzolla 2207.04417 (ApJL); ...
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p[MeV /fm?)]

Sampling the EOS

> Statistics of millions of EOS models that pass theory+astro constraints.
Mass bound of generic (sub-conformal) models: Mrov < 3(2.1) Mg.
» Radius estimates (+ error bars) for typical stars:

Ria = 12.427530km, Ry = 12.117}133 km (95% confidence) .

v

v

Remarkable agreement with Rpmin(M) from threshold mass calculations.

Koeppel, Rezzolla 1901.09977 (ApJL)
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Sound Speed in Dense Matter
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» Local maximum ¢ > 1/3 below maximal central densities of TOV stars
ec Tov = 10647322 MeV /fm® (95% confidence) .

» ¢2 < 1/3 at all densities possible, but only a small fraction (0.03%).

» Lower bound ¢2 = 0.2 of sub-conformal models around e ~ 400 MeV/fm3.
Altiparmak, CE, Rezzolla 2203.14974 (ApJL)
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Several Different Possibilities

| — ¢2>1/3 somewhere causality

I — ¢2<1/3 everywhere

| — monotonic
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Monotonic Sound Speed

» Separate calculation with more than 107 models.
» Monotonic by construction, but no lower mass bound.

» Can only reach Moy < 2 M.
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Fewer Possibilities
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causality
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Sound Speed Inside Neutron Stars
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Median (red) and 95% intervals (black) can be accurately described by
2 _ Bx? 5(x—e)? _ _ —
ci(x) = (ae”™ + e [1—tanh({x—7)], x=r/R.

> Light Stars: stiff core, soft outer layer.
> Typical Stars: large stiff core.

» Massive Stars: soft core, stiff outer layer.
CE, Rezzolla 2207.04417 (ApJL)
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Chirp Mass and Binary Tidal Deformability

> Chirp mass can be extracted accurately from inspiral GW strain frequency

o (MiMo)*5 5 83113, 3
Mchlrp = (M1 + M27)1/5 = 967T f f

> Binary tidal deformability encodes EOS properties via A;
16 (12M, + My) MM + (12My + Ms) M3 A,

A=
13 (My + M>)°

. A= 2k (R/M;)° .

» GW170817 only “good” event so far:
Mepirp = 1.1881 3003 Me, g = Ma/My > 0.7, A < 720.
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Binary Tidal Deformability

» More than 10® binary configurations with M » € [0.5Mg, Mrov]
Am/n(max =a+ chhlrp - /\1 186 = 485+§ﬁ )
a = —50(—20), b = 500(1800), ¢ = —4.5(—5.0) .
PDF
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Altiparmak, CE, Rezzolla 2203.14974 (ApJL)
see also: Zhao, Lattimer 1808.02858 (PRD)
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Black-Widow Binary Pulsar PSR J0952-0607

> Most massive NS known: M = 2.35 + 0.17 M, but large uncertainties!
Romani, Kandel, Filippenko, Brink, Zheng 2207.05124 (ApJL)

also: PSR J2215+5135 (M

_ +0.17
=22714575

Mg) Linares, Shahbaz, Casares 1805.08799 (ApJ)

> Large mass constraints dominate over radius constraints by NICER.
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Sound Speed and Conformal Anomaly
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Fujimoto, Fukushima, McLerran, Praszalowicz 2207.06753
Marczenko, McLerran, Redlich, Sasaki 2207.13059
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Impact of QCD

Mroy > 2.35 My,
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Quasi-Universality of the Pressure Profile

x=r/R.
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Puzzle

> Is there a micro-physical model that can explain the agnostic sound-speed

profile inside neutron stars?
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CE, Rezzolla 2207.04417 (ApJL)
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Summary

This talk:

> Basic properties (+ error-bars) of the cold EOS and neutron stars can be
estimated from constraint sampling: p(e), M(R),c? , A(Mcnirp) , - - -

» Using r/R allows to sample the NS interior: c2(r/R), A(r/R), ...

> Light stars have a stiff core and soft outer layers, massive stars have soft
cores and stiff outer layers.

> Can provide additional constraints for micro-physical EOS model building
and help to identify quasi-universal relations.

Ongoing work:

» Comparison of full Bayesian analysis to simple cutoff approach (this talk).

Yiang, CE, Rezzolla (online soon)

> Model specific sampling: narrow V-QCD parameter space with astro, . ..
CE, Jokela, Jarvinen (in progress)

» Sampling BNS-observables: threshold mass, post-merger frequencies, etc.
CE, Gorda, Rezzolla (in progress)
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Without Astro-Constraints
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Sub-Conformal Models
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Different Number of Segments

> Sound speed and MR when using 3,4,5 and 7 segments.

> Features at neutron star densities are robust.

MM
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