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Motivation

§ Goal: Infer QCD phase diagram and the equation of state (EOS).
§ Approach: Synthesis of EOS theory, simulation and observation.
§ This talk: Using relation between gravitational wave energy and
angular momentum (long-ringdown slope) as observable.
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Lots of recent work: . . . ; Annala, Gorda, Kurkela, Nättilä, Vuorinen 2105.05132 (PRX);
Komoltsev, Kurkela 2111.05350 (PRL); Gorda, Komoltsev, Kurkela 2204.11877 (ApJ);

CE, Rezzolla 2207.04417 (ApJL); Brandes, Weise, Kaiser 2208.03026 (PRD); . . .
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Correlating Post-Merger GWs with EOS Properties

§ Spectral features (fGW, f2, etc.) of post-merger GWs correlate with EOS.
many works: . . . ; Takami, Rezzolla, Baiotti 1412.3240 (PRD); Bauswein, Stergioulas

1502.03176 (PRD); Rezzolla, Takami 1604.00246 (PRD); De Pietri et al 1910.04036 (PRD);

Kiuchi et al 2211.07637 (PRL); Breschi et al 2110.06957 (PRL); . . .

§ Mechanism: stiff EOS give large radii, slow rotation and low frequencies.

§ Not observed so far, but expected to be seen by third-generation detectors:
Cosmic Explorer + Einstein Telescope « 180 BNSs/year (SNRą8).

see, e.g., Evans et al 2109.09882 (Cosmic Explorer technical report)
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Generic EOS Approach

§ So far: EOS-GW correlation studies use few “traditional” EOS models.

§ However, generic EOS parametrizations reveal large freedom.

§ Idea: Large ensemble (ą 105) of generic EOSs that are constrained by
astro, nuclear theory and perturbative QCD and cover allowed space.

§ EOS ensemble: Gaussian process regression method conditioned with
Bayesian likelihoods from dense matter theory and astro measurements.

Gorda, Komoltsev, Kurkela 2204.11877 (ApJ)
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Golden EOS Selection

§ Too many possibilities to simulate: smart selection recipe is needed.

§ Three variables (MTOV, CTOV, lnpTOV) to characterize the high-density
part of the EOS and one (R1.4) to break degeneracy at low densities.

§ Principle component analysis: 4D distribution essentially 3D-triangular.

§ Six “golden EOSs”: A-E at corners of 68% contours and F in centre.
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Golden EOSs and Mass-Radius Relations

§ Six EOS models manageable, but BNS parameter space still huge: fix
Mchirp “ 1.18 Md, but three different mass-ratios q “

M1
M2

“ 1, 0.85, 0.7.

§ Add T -dependence via simple gamma-law approximation with fixed
Γth “ 1.75, but analysis remains robust when changing to Γth “ 1.5, 2.0.
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Emitted GW Energy and Angular Momentum

§ Time evolution of GW strain components h`, hˆ from simulation.

§ Emitted energy and angular momentum from post-processing

EGWptq “
r 2

16π

ż t

´8

dt 1
´

9h2
` ` 9h2

ˆ

¯

, JGWptq “
r 2

16π

ż t

´8

dt 1
´

h`
9hˆ ´ 9h`hˆ

¯

.

see, e.g., Bishop, Rezzolla 1606.02532 (Living Reviews in Relativity)

§ Useful to normalise with Emer
GW :“ EGWptmerq and Jmer

GW :“ JGWptmerq.
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Long Ringdown

§ Post-merger period where EGWptq and JGWptq are linearly related.

§ Long-ringdown slope numerically close to GW frequency

dEGW

dJGW
“

9EGW

9JGW

“
9h2

` ` 9h2
ˆ

h`
9hˆ ´ 9h`hˆ

, fGW “
1

2π

h`
9hˆ ´ 9h`hˆ

h2
` ` h2

ˆ

.

§ Identity for simple quadrupole system with ℓ “ 2,m “ 2 deformation:

h`ptq9 cospϕptqq , hˆptq9 sinpϕptqq , 9EGW{ 9JGW “ fGW{p2πq .
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Robustness

§ Waveform dominated by the large-scale deformations of post-merger
remnant, only weak influence of small-scale features.

§ Essentially no difference between simulations with 200 ´ 400 m resolution.

§ Also insensitive to approximate thermal effects for Γth “ 1.5 ´ 2.

§ However, sensitive to BNS parameters such as chirp mass, but sufficiently
different EOSs remain distinguishable.
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Correlations

§ Slope correlates with maximum neutron star pressure and number density.

§ Bilinear fit of simulation data constrains EOS at highest (TOV) densities

dÊGW

dĴGW

“ β0`β1 pTOV`β2 nTOV`β3 q`β4 q pTOV`β5 q nTOV`β6 pTOV nTOV .
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A

B

C

D

E

F

3.0 3.5
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Impact of Slope Measurement

§ Mock measurement: assume measured values for the slope dÊGW{dĴGW

and f2 with ˘4% measurement uncertainty.

§ Correlation gives new evidence to update EOS constraints at all densities.

§ Slightly improvement compared to measuring just f2.

§ Pearson-correlation coefficients slightly larger for dÊGW{dĴGW than for f2

rpdEGW{dJGW, pTOVq “ 0.877 vs rpf2, pTOVq “ 0.792 .
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Summary

§ Third-generation GW observatories are expected to see numerous
BNS post-merger waveforms at high SNR.

§ Looking for EOS-GW correlations using large generic EOS set.

§ Principle component analysis to single out few golden EOSs.

§ Novel correlations between long ringdown slope dÊGW{dĴGW and
(pTOV, nTOV) constrain the EOS at maximum NS core densities.

§ Slope dÊGW{dĴGW simple to compute from the waveform.

§ Correlation + Bayes theorem: EOS (MR) constraints at all densities.

§ Improvement compared to measuring f2 only.
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Impact of Resolution
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Impact of Gamma
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Tabulated Models
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