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Density Profile

Demircik, CE, Järvinen 2009.10731 (ApJL)
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Equation of State

Relates properties of dense matter to properties of neutron stars.

p “ ppe, . . .q
Einstein Eq.

ÝÝÝÝÝÝÑ MpRq

Constrained by theory and neutron star observations:

§ Causality & thermodynamic stability: 0 ă c2s “
dp
de

ă 1

§ Direct mass and radius measurements: MTOV Á 2Md, 11 km À R À 14 km

§ First GW detection from a BNS merger GW170817: Λ̃ À 720
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Agnostic Approach

§ Impose boundary conditions from nuclear theory and perturbative QCD.
Hebeler, Lattimer, Pethick, Schwenk 1303.4662 (ApJ);

Fraga, Kurkela, Vuorinen 1311.5154 (ApJL)

§ Connect with random, but causal and thermodynamically consistent EOS.

c2s pµq“
pµi`1´µqc2s,i `pµ´µi qc

2
s,i`1

µi`1´µi
, npµq“n1 e

şµ
µ1

dµ1

µ1c2s pµ1q , ppµq“p1`
şµ
µ1

dµ1npµ1q .

Annala, Gorda, Kurkela, Nättilä, Vuorinen 1903.09121 (Nature Physics)

§ Constrain with pulsar and binary neutron star observations.
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Sampling the EOS

§ Statistics of millions of EOS models that pass theory+astro constraints.

§ Mass bound of generic (sub-conformal) models: MTOV ă 3 p2.1qMd.

§ Radius estimates (+ error bars) for typical stars:

R1.4 “ 12.42`0.52
´0.99 km , R2.0 “ 12.11`1.11

´1.23 km p95% confidenceq . (1)
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Sound Speed in Dense Matter
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§ Local maximum c2s ą 1{3 below maximal central densities of TOV stars

ec,TOV “ 1064`399
´244 MeV{fm3

p95% confidenceq .

§ c2s ď 1{3 at all densities possible, but only a small fraction (0.03%).

§ Lower bound c2s Á 0.2 of sub-conformal models around e « 400MeV/fm3.

§ Monotonic sound speed is impossible: Mmax
TOV ă 2Md.

Altiparmak, CE, Rezzolla 2203.14974 (ApJL)
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Speed of Sound inside Neutron Stars?
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Speed of Sound inside Neutron Stars
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Median (red) and 95% intervals (black) can be accurately described by

c2s pxq “

´

αeβx
2

` γeδpx´ϵq
2
¯

r1 ´ tanh pζx ´ ηqs , x ” r{R .

§ Light Stars: stiff core, soft outer layer.

§ Typical Stars: large stiff core.

§ Massive Stars: soft core, stiff outer layer.
CE, Rezzolla 2207.04417 (ApJL)
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Chirp Mass and Binary Tidal Deformability

§ Binary tidal deformability encodes EOS properties via Λi

Λ̃ “
16

13

p12M2 ` M1qM4
1Λ1 ` p12M1 ` M2qM4

2Λ2

pM1 ` M2q
5 , Λi “ 2

3
k2 pRi{Mi q

5 .

§ Chirp mass can be extracted accurately from inspiral GW strain frequency

Mchirp “
pM1M2q

3{5

pM1 ` M2q1{5
“

ˆ

5

96
π´8{3f ´11{3 9f

˙3{5

.

§ GW170817 only “good” event so far:

Mchirp “ 1.188`0.004
´0.002Md, q “ M2{M1 ą 0.7, Λ̃ À 720 .

LIGO/Virgo 1710.05832 (PRL), 1710.05834 (ApJL), 1805.11579 (PRX)
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Binary Tidal Deformability

§ More than 108 binary configurations with M1,2 P r0.5Md,MTOVs.

Λ̃minpmaxq “ a ` bMc
chirp ÝÑ Λ̃1.186 “ 485`225

´211 ,

a “ ´50p´20q, b “ 500p1800q, c “ ´4.5p´5.0q .
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Black-Widow Binary Pulsar PSR J0952-0607

§ Most massive NS known: M “ 2.35 ˘ 0.17Md, but large uncertainties!
Romani, Kandel, Filippenko, Brink, Zheng 2207.05124 (ApJL)

also: PSR J2215+5135 (M “ 2.27`0.17
´0.15 Md) Linares, Shahbaz, Casares 1805.08799 (ApJ)

§ Large mass constraints dominate over radius constraints by NICER.
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Sound Speed and Conformal Anomaly

∆ :“
1

3

gµνT
µν

e
“

1

3
´

p

e
, ´

2

3
ď ∆ ď

1

3
.

Fujimoto, Fukushima, McLerran, Praszalowicz 2207.06753 (PRL)

Marczenko, McLerran, Redlich, Sasaki 2207.13059
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Quasi-Universality of the Pressure Profile

ppxq

pc
“ eαx

2

` eα
cosβx ´ 1

cosβ ´ 1
, x ” r{R .
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A Holographic Approach to Dense QCD Matter
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Applications of Holography to Neutron Stars

§ Early attempts with D3-D7 hybrid EOS models.
Hoyos, Fernandez, Jokela, Vuorinen 1603.02943 (PRL);

Annala, CE, Hoyos, Fernandez, Jokela, Vuorinen 1711.06244 (JHEP)

§ First BNS merger simulations with input from holography.
CE, Järvinen, Nijs, van der Schee 1908.03213 (PRD)

§ Rapidly rotating stars (GW190814) with V-QCD model.
Demircik,CE, Järvinen 2009.10731 (ApJL)

§ Superconducting holographic quark matter in compact stars.
Bitaghsir Fadafan, Cruz Rojas, Evans 2009.14079 (PRD)

§ Neutron stars with superconducting QCD matter from 6D holography.
Ghoroku, Kashiwa, Nakano, Tachibana, Toyoda 2107.14450 (PRD)

§ Realistic neutron stars from Witten-Sakai-Sugimoto (WSS) model.
Kovensky, Poole, Schmitt 2111.03374 (PRD)

§ Merger simulations with holographic hard-wall model.
Bartolini, Gudnason, Leutgeb, Rebhan 2202.12845 (PRD)

§ More references on holographic EOS modelling in two review articles.
Järvinen 2205.05691 (EPJC), Hoyos, Jokela,Vuorinen 2112.08422 (Prog.Part.Nucl.Phys.)
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Holographic Veneziano QCD

Holographic bottom-up model for QCD with many parameters that are tuned
to mimic QCD and that are constrained by lattice QCD data.

Järvinen, Kiritsis 1112.1261 (JHEP)

Gluons: Improved holographic QCD (Einstein-dilaton gravity)

Sg “ N2
cM

3
ş

d5x
?

´g
”

R ´ 4
3

pBλq2

λ2 ` Vg pλq

ı

λ ” eϕ Ø TrF 2 sources the ’t Hooft coupling in YM theory
Gürsoy, Kiritsis 0707.1324 (JHEP); Gürsoy, Kiritsis, Nitti 0707.1349 (JHEP)

Quarks: Tachyonic Dirac-Born-Infeld (DBI) action

Sf “ ´NfNcM
3

ş

d5xVf 0pλqe´τ2a

´det rgab ` κpλqBaτBbτ ` wpλqFabs

Frt “ Φ1
prq , Φp0q “ µ ,

tachyon τ Ø q̄q controls chiral symmetry breaking.
Bigazzi et al. 0505140 (JHEP); Casero et al. 0702155 (Nucl.Phys.B)

Baryons: homogeneous solution of non-Abelian DBI + Cern–Simons action.
Ishii, Järvinen, Nijs 1903.06169 (JHEP)

Veneziano limit: Nc Ñ 8 and Nf Ñ 8 with Nf {Nc “ Op1q fixed
Järvinen, Kiritsis 1112.1261 (JHEP)
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Cold V-QCD Hybrid Equation of State

§ Computing neutron star properties requires EOS at low and high densities.

§ Homogeneous approximation for V-QCD baryons not reliable at low
densities: use results from nuclear theory to model the low density part.

§ Hybrid EOSs: nuclear theory model at low densities + V-QCD model for
dense baryonic and quark matter at large densities.
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Hot V-QCD Hybrid Equation of State

§ Low density part: Hemple-Schaffner-Bielich model (HS)DD2 + Particle
Data Group (PDG) mesons. Hempel, Schaffner-Bielich 0911.4073 (Nucl.Phys.A);

Zyla et al. (Particle Data Group 2020)

.§ (HS)DD2 too stiff around ns , replace with APR model.
Akmal, Pandharipande, Ravenhall 9804027 (PRC)

§ Van der Waals construction to extend cold V-QCD baryons to finite-T .
Vovchenko, Motornenko, Alba, Gorenstein, Satarov, Stoecker 1707.09215 (PRC)

§ Mixed baryon and quark matter phase from Gibbs construction

XNMpT , np1q

b ,Y p1q
q q “ XQMpT , np2q

b ,Y p2q
q q , X “ tp, µb, µleu .
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V-QCD Critical Point

Estimates for the critical point:

110 MeV À Tc À 130 MeV
0.3 ns À nc À 0.6 ns

model nbc
ns

µbc
MeV

Tc
MeV

soft 0.46 485 128
interm. 0.62 575 118
stiff 0.32 565 112
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Binary Neutron Star Mergers

§ Significant sources of gravitational radiation.

§ Microscopic properties of dense matter encoded in GW and EM signal.

§ Likely the origin of short gamma-ray bursts

§ and of heavy elements like gold, platinum, uranium, . . .

Picture: Baiotti, Rezzola 1607.03540 (Rept.Prog.Phys.)
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Simulating Binary Neutron Star Mergers

Have to solve the 3+1D General Relativistic hydrodynamic equations:

Rµν ´
1

2
Rgµν “ 8πGNTµν , ∇µT

µν
“ 0 , ∇µJ

µ
“ 0 ,

requires EOS p “ ppnb,T ,Yeq as input and initial spacetime and fluid
distribution that models a binary neutron star system.

§ Powerful simulation tools developed in Frankfurt, mainly by a few renown
and upcoming experts in numerical relativity:

Elias Most, Carlo Musolino, Harry Ho-Yin Ng, Jens Papenfort,

Samule Tootle, Konrad Topolski, Lukas Weih,. . .

§ Spectral code Frankfurt University/Kadath (FUKA) for initial data.

Papenfort, Tootle, Grandclement, Most, Rezzolla 2103.09911 (PRD)

§ Frankfurt/Illinois (FIL) code for binary evolution with tabulated EOS.

Most, Papenfort, Rezzolla 1907.10328 (MNRAS)

§ Implemented in the Einstein Toolkit.
http://einsteintoolkit.org
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High-Performance Computing Center Stuttgart

§ Project BNSMIC: 100+ million core-hours on HAWK.

Picture Copyright: Ben Derzian for HLRS
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Movie by Konrad Topolski with data from 2205.05691 (SciPost).
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Movie by Konrad Topolski with data from 2205.05691 (SciPost).
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Hot, Warm and Cold Quarks
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Phase Diagram
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Quark Abundance
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Extracting Waveforms

§ Newman-Penrose scalar ψ4 from simulation

ψ4 :“ Cµνρσk
µm̄νkρm̄σ , null tetrade: tlµ, kµ,mµ, m̄µ

u .

§ GW polarization amplitudes (h`,hˆ) are related to ψ4 via

see e.g. book by M. Alcubierre (2005)

:h` ´ i:hˆ “ ψ4 “

8
ÿ

ℓ“2

ℓ
ÿ

m“´ℓ

ψℓm
4 ´2Y ℓmpθ, φq .

§ Consider for example the dominant ℓ “ m “ 2 mode

h`,ˆ “

8
ÿ

ℓ“2

ℓ
ÿ

m“´ℓ

hℓm
`,ˆ´2Y ℓmpθ, φq « h22

`,ˆ´2Y 22pθ, φq ,

§ Optimal orientation (´2Y 22p0, 0q “ 1
2

a

5{π) with respect to the detector.

§ Extrapolate signal to same luminosity distance (40Mpc) as GW170817.
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Power Spectral Density

Post-merger power spectral density (PSD) has typical three peak structure

h̃pf q ”

b

|h̃`pf q|2`|h̃ˆpf q|2

2
, h̃`,ˆpf q ”

ş

h`,ˆptqe´i2πftdt .

Characteristic frequencies f1, f2, f3 encode information about EOS.

SLyVQCD105-q10-M1300
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Waveforms and Frequency Spectra

§ Small impact of quark matter on post-merger frequencies.

§ Phase transition triggered collapse (PTTC) leads to shorter lifetime of the
hyper massive neutron star (HMNS).

h22
+ × 1022, 40 Mpc 2

√
f h̃(f ) [Hz−1/2]
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Waveforms and Frequency Spectra

§ Small impact of quark matter on post-merger frequencies.

§ Phase transition triggered collapse (PTTC) leads to shorter lifetime of the
hyper massive neutron star (HMNS).

h22
+ × 1022, 40 Mpc 2

√
f h̃(f ) [Hz−1/2]

PTTC

Tootle, CE, Topolski, Demircik, Järvinen, Rezzolla 2205.05691 (SciPost) 36/37



Summary

This talk:

§ Basic properties of the cold EOS and neutron stars can be estimated from
constraint sampling: ppeq ,MpRq , c2s , Λ̃pMchirpq , . . .

§ Hot V-QCD hybrid EOS with deconfinement phase transition, three
tabulated versions on CompOSE database: DEJ(DD2-VQCD).

https://compose.obspm.fr/§ Predictions for the QCD critical point:

110 MeV À Tc À 130 MeV , 0.3 ns À nc À 0.6 ns .

§ Neutron star merger simulations with V-QCD EOS.

§ Identified 3 different stages in HMNSs: hot, warm, cold quark matter.

§ Small impact on frequencies, but PTTC shortens HMNS lifetime.

Ongoing work:

§ Further improving and constraining the V-QCD hybrid EOS models.

§ Prompt collapse: Imprint of quark formation on threshold mass?

§ Long-time stability (lifetime) of HMNS: Need simulations up to 1-2 sec.
(expensive, simplified spacetime evolution, axial-symmetry, . . . )

§ . . .

37/37



V-QCD without baryons (I)

Consider first the non-baryonic V-QCD action, whose solutions will serve
as background for the probe baryons

S
p0q

V´QCD “ Sglue ` S
p0q

DBI .

The gluon part is given by the IHQCD (dilaton gravity) action

Sglue “ N2
cM

3
ş

d5x
?

´g
”

R ´ 4
3

pBλq
2

λ2 ` Vg pλq

ı

,

where λ ” eϕ Ø TrF 2 (« g2Nc near the boundary) sources the ’t Hooft
coupling in YM theory, the dilaton potential is chosen1 to mimic QCD

Vg pλq “ 12
”

1 ` V1λ ` V2λ
2

1`λ{λ0
` VIRe

´λ0{λpλ{λ0q4{3
a

logp1 ` λ{λ0q

ı

.

Finite T is implemented by homogeneous+isotropic black brane metric

ds2 “ e2Aprqp´f prqdt2 ` dx⃗2 ` f ´1prqdr2q .

1E.g. V1 and V2 are fixed by requiring the UV RG flow of the ’t Hooft coupling to
be the same as in QCD up to two-loop order.
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V-QCD without baryons (II)

The flavor part is modelled by the tachyonic DBI-action2

Sp0q

DBI “ ´NfNcM
3

ş

d5xVf 0pλqe´τ2a

´det rgab ` κpλqBaτBbτ ` wpλqFabs ,

Frt “ Φ1
prq , Φp0q “ µ ,

where the tachyon τ Ø q̄q controls chiral symmetry breaking.

Several potentials: {Vg pλq,Vf 0pλq,wpλq, κpλq}, chosen to match pQCD
in UV (λ Ñ 0), qualitative agreement with QCD in IR (λ Ñ 8) and
tuned to lattice QCD in the middle (λ „ Op1q).

For details see Appendix B of Ishii, Järvinen, Nijs arXiv:1903.06169

Different solutions:

without/with horizon Ø confined/deconfined phase
without/with tachyon Ø chirally symmetric/chirally broken phase

2Without baryons we have a vectorial flavor singlet gauge field ApL{Rq “ If Φprqdt
giving nonzero charge density and chemical potential.
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Probe baryons in V-QCD

Each baryon maps to a solitonic “instanton” configuration of non-Abelian
gauge fields in the bulk.

Witten; Gross, Ooguri; . . .

Consider the full non-Abelian brane action S “ SDBI ` SCS where

Bigazzi, Casero, Cotrone, Kiritsis, Paredes; Casero, Kiritsis, Paredes

SDBI “ ´
1

2
M3Nc Tr

ż

d5x Vf 0pλqe´τ 2
´

a

´ detApLq `
a

´ detApRq

¯

,

A
pL{Rq

MN “ gMN ` δrMδrNκpλqτ 1prq2 ` δrtMNwpλqΦ1prq ` wpλqF
pL{Rq

MN

gives the dynamics of the solitons.
The Cern-Simons term sources the baryon number for the solitions

SCS “
Nc

8π2

ż

Φprqe´bτ 2

dt ^

´

F pLq ^ F pLq ´ F pRq ^ F pRq ` ¨ ¨ ¨

¯

.

Non-Abelian DBI action only known to first few orders in F pL{Rq: expand

to second order on top of solution (gMN ,Φ, λ, τ) obtained from S
p0q

V´QCD .
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Homogeneous Baryon Ansatz

Set Nf “ 2 and consider the SU(2) Ansatz

Rozali, Shieh, Van Raamsdonk, Wu

Ai
L “ ´Ai

R “ hprqσi

Immediate consequence: baryon charge integrates to zero?

Nb9

ż

dr
d

dr

”

e´bτ 2

h3p1 ´ 2bτ 2q

ı

?
“ 0

However finite baryon number may can be realized by discontinuity of h
Ø smeared solitons in singular gauge.

Ishii, Järvinen, Nijs, arXiv:1903.06169

The free parameter b of the model is used to tune the baryon onset to its
physical value in QCD.
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Binary tidal deformability and chirp mass

§ Chirp mass can be extracted accurately from inspiral GW strain signal

Mchirp “
pM1M2q

3{5

pM1 ` M2q1{5
“

ˆ

5

96
π´8{3f ´11{3 9f

˙3{5

. (2)

§ Binary tidal deformability encodes EOS properties via Λi

Λ̃ “
16

13

p12M2 ` M1qM4
1Λ1 ` p12M1 ` M2qM4

2Λ2

pM1 ` M2q
5 . (3)

§ GW170817 only “good” event so far:

Mchirp “ 1.188`0.004
´0.002Md, q “ M2{M1 ą 0.7, Λ̃ À 720 . (4)

LIGO/Virgo: arXiv:1805.11579
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Mechanical Toy Model

Takami, Rezzolla, Baiotti arXiv:1412.3240
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Phase Transition Signatures in Wavefrom Spectra

§ NPT: No Phase Transition

§ PTTC: Phase Transition Triggered Collapse

§ DPT: Delayed Phase Transition
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Finite Temperature Extension

§ Temperature dependence is essential when studying BNS-mergers.

§ T-dependence of V-QCD baryons is trivial: confining background has no
horizon, artefact of large Nc limit.

§ Van der Waals construction to extend cold V-QCD baryons to finite-T .

§ Ideal gas of protons, neutrons and electrons with excluded volume
correction for nucleons.

pexpT , tµiuq “ pidpT , tµ̃iuq , µ̃i “ µi ´ v0pexpT , tµiuq pi “ p, nq

§ Add potential term to match with V-QCD at T “ 0

pvdWpT , tµiuq “ pexpT , tµiuq ` ∆pptµiuq

∆pptµiuq “ pV´QCDpT “ 0, tµiuq ´ pexpT “ 0, tµiuq

Rischke, Gorenstein, Stoecker, Greiner, Z Phys. C 51, 485 (1991)

Vovchenko, Gorenstein, Stoecker, arXiv:1609.03975

Vovchenko, Motornenko, Alba, Gorenstein, Satarov, Stoecker, arXiv:1707.09215
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Building blocks of the EOSs

§ Lowest densities (0 ´ 0.5 ns): Baym-Pethick-Sutherland (BPS) EOS
Baym, Pethick, Sutherland (1971)

§ Low densities (0.5 ´ 1.2 ns): ppnq “ K nΓ , Γ P r1.77, 3.23s

Hebeler, Lattimer, Pethick, Schwenk arXiv:1303.4662

§ High densities (1.2 ´ 40 ns): speed of sound parametrization
Annala, Gorda, Kurkela, Nättilä, Vuorinen arXiv:1903.09121

§ Highest densities (Á 40 ns): perturbative QCD results

ppµq “
3

4π2

´µ

3

¯4
ˆ

c1 ´
d1X

´ν1

µ{GeV ´ d2X´ν2

˙

, X P r1, 4s , (5)

c1 “ 0.9008 d1 “ 0.5034 d2 “ 1.452 ν1 “ 0.3553 ν2 “ 0.9101 .

Kurkela, Romatschke, Vuorinen arXiv:0912.1856; Fraga, Kurkela, Vuorinen arXiv:1311.5154

50 75 100 125 150 175
e [MeV/fm3]

0.5

1.0

1.5

2.0

2.5

3.0

3.5

p
[M

eV
/f

m
3
]

CET− EoS

Crust− CET boundary

BPS− Crust

2.4 2.6 2.8 3.0
µB [GeV]

2000

3000

4000

5000

6000

7000

8000
p

[M
eV
/f

m
3
]

X = 1

X = 4

48/37



Two Puzzles

§ Is there a micro-physical model that can explain the agnostic sound-speed
profile inside neutron stars?

§ What is the reason for the strong tension between the HESS J1731-347
measurement and model agnostic M-R distribution?

M “ 0.77`0.20
´0.17 Md , R “ 10.4`0.86

´0.78 km .

Doroshenko, Suleimanov, Pühlhofer, Santangelo (Nature Astronomy Oct.2022)
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Two Puzzles

§ Is there a micro-physical model that can explain the agnostic sound-speed
profile inside neutron stars?

§ What is the reason for the strong tension between the HESS J1731-347
measurement and model agnostic M-R distribution?

§ Combined estimate with agnostic Bayesian analysis:

M “ 0.77Md , R “ 11.43`0.64
´0.60 km .
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