
Non-equilibrium steady state formation in 3+1
dimensions

Christian Ecker

22 June 2021

Based on

2103.10435 with Johanna Erdmenger and Wilke van der Schee

1/33



Non-equilibrium steady states

§ NESS: time independent thermal properties, but non-vanishing fluxes.
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CFT2

§ Universal formula for heat current and temperature

xT tx
y “

πc

12

´

T 2
C ´ T 2

H

¯

, T “
a

TCTH , vH{C “ ˘1 .

[Bernard, Doyon (1202.0239)]

§ Recently generalised to TT̄ -deformed CFT2.
[Medenjak, Policastro, Yoshimura (2011.05827)]

§ AdS3/CFT2: gravity dual of NESS is boosted BTZ black brane.
[Bhaseen, Doyon, Lucas, Schalm (1311.3655)]
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D ą 2

§ No closed solutions available, but insights from hydro and holography.
[Spillane, Herzog (1512.09071); Amado, Yarom (1501.01627); Pourhasan (1509.01162);

Herzog, Spillane, Yarom (1605.01404); Fernandez, Rajagopal, Thorlacius (1909.06377)]

§ Shockwave moving towards hot side violates local version of the 2nd law of
thermodynamics. Can be cured by replacing shock with rarefaction wave.
[Lucas, Schalm, Doyon, Bhaseen (1512.09037); Spillane, Herzog (1512.09071); Glorioso, Liu

(1612.07705)]
§ Boosted black branes are the only regular solutions with homogeneous

stress tensor ñ NESS region is described by boosted density matrix.
[Bhaseen, Doyon, Lucas, Schalm (1311.3655)]

sh
oc

kw
av

e

shockw
ave

shockw
ave ra

re
fa

ct
io

n 
w

av
e

NESS

NESS

4/33



AdS5/CFT4
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Riemann problem

Ideal hydrodynamics

BµT
µν
“ 0 , BµJ

µ
“ 0 , Tµν

“ pE ` Pquµuν
` Pηµν , Jµ

“ nuµ .

Equation of state of a conformally invariant fluid

PpEq “ c2s E , c2s “
1

d
.

Initial value problem with discontinuous ICs for energy and charge density

Ep0, xq “

#

EC @x ă 0

EH @x ą 0
, np0, xq “

#

nC @x ă 0

nH @x ą 0
.

Weak solutions including discontinuities only need to satisfy integrated EOMs

8
ż

0

dt

8
ż

´8

dx φBµT
µν
“ 0 ,

8
ż

0

dt

8
ż

´8

dx φBµJ
µ
“ 0 .
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Double-shock solution

vC “ ´cs

d

1` c2s χ

c2s ` χ
, vS “ ´

csp1´ χq
a

p1` c2s χqpc2s ` χq
, vH “ cs

d

c2s ` χ

1` c2s χ
,

ES “
?
ECEH , χ “

a

EC {EH
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Contact discontinuity

n1 “ nC

d

1` c2s χ

χpc2s ` χq
, n2 “ nH

d

χpc2s ` χq

1` c2s χ

χ=1/4

χ=
73 -1

12

χ=3/4
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Entropy condition

§ Shock wave moving into hot region violates the local entropy condition

Bµs
µ
ě 0 , sµ “ E`P

T
uµ
“ kE

1
1`c2s uµ .

Cold

Hot
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s
)

lim
χÑ0

∆sH “ ´k c2s pEHq
1

1`c2s , χ˚2 « 0.1301 , χ˚3 « 0.1397 , χ˚4 « 0.1428 , . . .

9/33



Rarefaction wave

§ A rarefaction wave saturates the entropy condition by construction

Bµs
µ “ 0 .

χ=1/4

χ=1/2

χ=3/4
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Holographic model

§ 5D Einstein-Maxwell gravity

S “
1

16πGN

ż

M
d5x
?
´g

ˆ

R `
12

L2
´

e2L2

4
FMNF

MN

˙

` SGHY ` Sct .

§ Inhomogeneous AdS5 black branes

ds2 “ ´Cdt2`2drdt`2Gdzdt`S2
´

eBdx2K ` e´2Bdz2
¯

, AM “ Atdt`Azdz .

§ Inhomogenous states in N “ 4 SYM

xTµν
y “

1

4πGN

¨

˚

˚

˝

E S 0 0
S P‖ 0 0
0 0 PK 0
0 0 0 PK

˛

‹

‹

‚

, xJµ
y “

e2L4

4πGN

¨

˚

˚

˝

ρ
σ
0
0

˛

‹

‹

‚

.

§ IC: Smoothed step function for energy density ñ inhomogeneous horizon.
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Energy density
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Energy density
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Energy density

14/33



Deviation from hydrodynamics

Check constituent relations for N “ 4 SYM : η{s “ 1{4π , ζ “ 0 ,P “ 1
3
E

Tµν
“ Euµuν

` PpEq∆µν
´ ησµν

´ ζBρu
ρ∆µν

` . . .
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Charge density
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Charge density

Shock+rarefaction
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Charge density
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Diffusion of charge
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Diffusion of charge

§ Expected result for viscous diffusion: ∆diffptq «
?
Dt.

[Lucas, Schalm, Doyon, Bhaseen (1512.09037)]

§ Estimate width of the shock ∆diffptq by distance between points where
charge density is 25% and 75% of its maximum value.
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Entropy production

§ Dual gravity description automatically satisfies entropy condition:
Bµs

µ ě 0 translates to Raychaudhuri equation at the horizon.
[Eling, Oz (1103.1657)]
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Entropy production

Rarefaction wave: lim
tÑ8

80.5
t0.700 “ 0 consistent with Bµs

µ “ 0.

Shockwave:
ş

ză0

dz Bµs
µ “ π?

3m3

´

χ´1{4 ´

b

χp3`χq
1`3χ

¯

« 0.00610.

shock

rarefaction

3.77+ 28.8
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Apparent horizon entropy
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Apparent horizon entropy

Apparent horizon
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Entanglement entropy

§ Divide system into two parts (A,B “ Ā)

§ Assume that the Hilbert space factorizes

H “ HA bHB

§ Compute reduced density matrix by
tracing over HB

ρA “ TrB ρ

§ Entanglement entropy is defined as the
von Neumann entropy of ρA

SA “ ´TrA ρAlogρA

Lattice Theory

A

B

∂A

Quantum Field Theory

A

∂A

B

Σd-1
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Holographic entanglement entropy

SA “
A

4GN

[Ryu, Takayanagi (hep-th/0603001); Hubeny, Rangamani, Takayanagi (0705.0016)]

  

A
B

extremal 
surface 

t=const.

A

d dim. CFT

UV cutoff

d+1 dim. GR
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Infinite stripe regions

ArX s “ `2K

ż

dσ

c

ḡαβpUpσq,T pσq,Zpσqq
dXα

dσ

dXβ

dσ
s.t. Xα

p0q “ t0, t0,˘`{2u ,

d2Xα

dσ2
` Γα

βγ
dXβ

dσ

dX γ

dσ
“ J

dXα

dσ
, Sren “

Acut
´Acut

0

4GN`2K
.

mt=2

mt=40
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Extremal surfaces
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Entanglement entropy for shock

aSren ` b « E
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Entanglement entropy for shock
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Entanglement entropy for rarefaction wave
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Entanglement entropy for rarefaction wave
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Summary

§ Shock+rarefaction wave solution of the Riemann problem provides
excellent approximation to the properties of NESSs in N “ 4 SYM.

§ Only small (Æ 1%) deviations from constituent relations of viscous
hydrodynamics at the locations of shocks.

§ Charge density forms diffusing transition region inside NESS, no evidence
for sharp contact discontinuity.

§ HEE follows closely the energy density, except for a short delay.

Open problems

§ Backreaction of the gauge field ñ P “ PpE , ρq, what happens to NESS
when diffusing charge backreacts on energy?

§ Transverse flow ñ contact discontinuity in energy density.
[Mach (1104.3751)]

§ Scalar potential for phase transitions and conformal symmetry breaking.
[Bea, Casalderrey-Solana, Giannakopoulos, Mateos, Sanchez-Garitaonandia (2104.05708)]

§ Probe deeper into the far-from-equilibrium regime χ ! 1.
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Backup
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Shock Velocities
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Velocities
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Independence of initial conditions
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Charge density

χ=1/4

χ=
73 -1
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χ=3/4
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Comparison to Hydro II
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