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Motivation

§ Adiabatic speed of sound1 provides a measure for the stiffness of matter

c2s “

ˆ

Bp

Be

˙

s

. (1)

§ Relevant for neutron star properties: stiff (soft) matter has large (small)
sound speed and results in large (small) maximal mass and radius.

§ Constrained by causality and thermodynamic stability: c2s P r0, 1s.

§ ”Slope” of the Equation of State (EOS) only known in certain limits:

c2s pnq “

$

’

&

’

%

! 1 @ n ! ns ,

? @ n Á ns , ns “ 0.16 fm´3 ,

Ñ 1{3 @ n " ns .

(2)

§ Difficult open problem: What is c2s pnq in QCD at neutron star densities?

1We use units where we set the speed of light c “ 1.
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Several different possibilities
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Making progress without solving QCD

§ Use nuclear theory at low and perturbative QCD results at high densities.
[Baym, Pethick, Sutherland (1971), Hebeler, Lattimer, Pethick, Schwenk arXiv:1303.4662,

Fraga, Kurkela, Vuorinen arXiv:1311.5154]

§ Randomly generate several linear speed of sound segments in between.

c2s pµq“
pµi`1´µqc2s,i `pµ´µi qc

2
s,i`1

µi`1´µi
, npµq“n1 e

şµ
µ1

dµ1

µ1c2s pµ1q , ppµq“p1`
şµ
µ1

dµ1npµ1q . (3)

[Annala, Gorda, Kurkela, Nättilä, Vuorinen arXiv:1903.09121]

§ Solve TOV and keep only models that satisfy observational constraints.

§ Repeat several million times and study the distribution of viable solutions.
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Sound speed distribution of more than 106 models
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§ Local maximum c2s ą 1{3 below maximal central densities of TOV stars

ec,TOV “ 1064`399
´244 MeV{fm3

p95% confidenceq . (4)

§ c2s ď 1{3 at all densities possible, but only a small fraction (0.03%).

§ Lower bound c2s Á 0.2 of sub-conformal models around e « 400MeV/fm3.
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EOS and mass-radius distribution
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§ Outer EOS contour like Annala+, but much narrower distribution.

[Annala, Gorda, Kurkela, Nättilä, Vuorinen arXiv:2105.05132]

§ Upper bound of generic models: MTOV À 3Md.

§ Upper bound of sub-conformal models: MTOV ă 2.1Md.

§ Radius estimates (+ error bars) for typical stars:

R1.4 “ 12.42`0.52
´0.99 km , R2.0 “ 12.11`1.11

´1.23 km p95% confidenceq . (5)

§ Remarkable agreement with RminpMq from threshold mass calculation.
[Koeppel, Rezzolla arXiv:1901.09977] 6/11



Monotonic sound speed
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§ Separate calculation for more than 107 models.

§ Drop condition on the lower bound on maximal mass.

§ Monotonic models can only reach MTOV ă 2Md.
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Several Possibilities
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Binary tidal deformability and chirp mass I

§ Chirp mass can be extracted accurately from inspiral GW strain signal

Mchirp “
pM1M2q

3{5

pM1 ` M2q1{5
“

ˆ

5

96
π´8{3f ´11{3 9f

˙3{5

. (6)

§ Binary tidal deformability encodes EOS properties via Λi

Λ̃ “
16

13

p12M2 ` M1qM4
1Λ1 ` p12M1 ` M2qM4

2Λ2

pM1 ` M2q
5 . (7)

§ GW170817 only “good” event so far:

Mchirp “ 1.188`0.004
´0.002Md, q “ M2{M1 ą 0.7, Λ̃ À 720 . (8)

[LIGO/Virgo: arXiv:1805.11579]
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Binary tidal deformability and chirp mass II
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§ More than 108 binary configurations with M1,2 P r0.5Md,MTOVs.

§ Simple fitting formula for the minimum and maximum of Λ̃pMchirpq

Λ̃minpmaxq “ a ` bMc
chirp , (9)

a “ ´50p´20q, b “ 500p1800q, c “ ´4.5p´5.0q .
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Summary

§ Studied sound speed distribution of several million viable EOS models.

§ Sound speed is non-monotonic and probably c2s ą 1{3 in stellar interior.

§ c2s ď 1{3 possible but only 0.03% of more than 106 viable EOSs.

§ Simple fitting formulas for upper and lower bound on Λ̃pMchirpq.

[Altiparmak, CE, Rezzolla arXiv:2203.14974]

In progress:

§ Study models with first order phase transition. Can we constrain the onset
and strength of first order phase transitions with observational data?

§ Bayesian analysis for observational constraints and EOS parameters.

[CE, Jiang, Rezzolla]
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Building blocks of the EOSs

§ Lowest densities (0 ´ 0.5 ns): Baym-Pethick-Sutherland (BPS) EoS
[Baym, Pethick, Sutherland (1971)]

§ Low densities (0.5 ´ 1.2 ns): ppnq “ K nΓ , Γ P r1.77, 3.23s
[Hebeler, Lattimer, Pethick, Schwenk 1303.4662 (ApJ)]

§ High densities (1.2 ´ 40 ns): speed of sound parametrization
[Annala, Gorda, Kurkela, Nättilä, Vuorinen arXiv:1903.09121]

§ Highest densities (Á 40 ns): perturbative QCD results

ppµq “
3

4π2

´µ

3

¯4
ˆ

c1 ´
d1X

´ν1

µ{GeV ´ d2X´ν2

˙

, X P r1, 4s , (10)

c1 “ 0.9008 d1 “ 0.5034 d2 “ 1.452 ν1 “ 0.3553 ν2 “ 0.9101 .

[Kurkela, Romatschke, Vuorinen arXiv:0912.1856; Fraga, Kurkela, Vuorinen arXiv:1311.5154]
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Observational constraints

§ NICER: Recent radius measurement of PSR J0740+6620:

MTOV ą 2.08`0.07
´0.07p2.072`0.067

´0.066qMd , R “ 13.7`2.6
´1.5p12.39`1.3

´0.98qkm.

[Miller et al. arXiv:2105.06979, (Riley et al. arXiv:2105.06980)]

§ LIGO/Virgo: constraints on tidal deformability from GW170817:

Λ̃ ă 720 for Mchirp “ 1.186Md and q ą 0.73

[LIGO/Virgo: arXiv:1710.05832, arXiv:1805.11579, arXiv:1805.11581]

§ Radius measurement of PSR J0030+00451:

M “ 1.34`0.15
´0.16p1.44`0.15

´0.14qMd , R “ 12.71`1.14
´1.19p13.02`1.24

´1.06qkm

[Riley et al. arXiv:1912.05702, (Miller et al. arXiv:1912.05705)]
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Without observational constraints
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Sub-conformal models
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Different number of segments

§ Sound speed and MR when using 3,4,5 and 7 segments.

§ Features at neutron star densities are robust.
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