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Motivation

» Adiabatic speed of sound® provides a measure for the stiffness of matter

Q- (‘;l) . (1)

» Relevant for neutron star properties: stiff (soft) matter has large (small)
sound speed and results in large (small) maximal mass and radius.

» Constrained by causality and thermodynamic stability: ¢Z € [0, 1].

> "Slope” of the Equation of State (EOS) only known in certain limits:

«1 Vn<ns,
c(n) = ? YnZns, ns=0.16fm™3, (2)
—1/3 Vn>»ns.

> Difficult open problem: What is CSZ(n) in QCD at neutron star densities?

1We use units where we set the speed of light ¢ = 1.
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Several different possibilities

— 2>1/3 causality

080 __ 2<1/3

— monotonic
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Making progress without solving QCD

Use nuclear theory at low and perturbative QCD results at high densities.
[Baym, Pethick, Sutherland (1971), Hebeler, Lattimer, Pethick, Schwenk arXiv:1303.4662,

Fraga, Kurkela, Vuorinen arXiv:1311.5154]

Randomly generate several linear speed of sound segments in between.

2 2 po__dp
wiv1—r)cs i+ (n—pi)el iy Su1 T
cf(u)=(' )uf;'w,- L nuy=me HEED p(uy=pr 4 du'n(i)) . (3)

[Annala, Gorda, Kurkela, Nattild, Vuorinen arXiv:1903.09121]

Solve TOV and keep only models that satisfy observational constraints.

Repeat several million times and study the distribution of viable solutions.
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Sound speed distribution of more than 10° models
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» Local maximum cZ > 1/3 below maximal central densities of TOV stars
+309 3 (Qx0
ec,rov = 106475, MeV /fm" (95% confidence) . @)

» ¢2 < 1/3 at all densities possible, but only a small fraction (0.03%).

» Lower bound ¢ 2 0.2 of sub-conformal models around e ~ 400 MeV /fm?.
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> QOuter EOS contour like Annala+, but much narrower distribution.
[Annala, Gorda, Kurkela, Nattild, Vuorinen arXiv:2105.05132]

> Upper bound of generic models: Mrov < 3Mg.
> Upper bound of sub-conformal models: Mrov < 2.1Mg.
» Radius estimates (+ error bars) for typical stars:

Seekm, Rog = 12.117 ]33 km (95% confidence) . (5)

Ri4 = 12.427

0.99

> Remarkable agreement with Rmin(M) from threshold mass calculation.

[Koeppel, Rezzolla arXiv:1901.09977] 6/11



Monotonic sound speed
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» Separate calculation for more than 10’ models.
> Drop condition on the lower bound on maximal mass.

> Monotonic models can only reach Moy < 2 M.
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Several Possibilities

— likely
— unlikely

— impossible

causality
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Binary tidal deformability and chirp mass |

> Chirp mass can be extracted accurately from inspiral GW strain signal

(MM (5 s s\
Mchlrp = W = %TI’ f f . (6)

> Binary tidal deformability encodes EOS properties via A;

16 (12M, + My) MiAs + (12My + Ma) M3

A=
13 (My + Mp)®

» GW170817 only “good” event so far:

Meninp = 1188735 My, g = Mo/My > 0.7, A<T720.  (8)

[LIGO/Virgo: arXiv:1805.11579]
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Binary tidal deformability and chirp mass Il

PDF
107 107 1072 0.1 0.2 0.3 0.4 0.5 1

] 200 400 600 800 1000

» More than 10® binary configurations with M, € [0.5Mg, Mrov].
> Simple fitting formula for the minimum and maximum of A(M cirp)
7\min(max) =a+ bM(c:hirp ’ (9)

a = —50(—20), b = 500(1800), c = —4.5(—5.0).
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Summary

> Studied sound speed distribution of several million viable EOS models.
» Sound speed is non-monotonic and probably ¢ > 1/3 in stellar interior.
» ¢ < 1/3 possible but only 0.03% of more than 10° viable EOSs.
> Simple fitting formulas for upper and lower bound on A(Mchirp).
[Altiparmak, CE, Rezzolla arXiv:2203.14974]
In progress:

> Study models with first order phase transition. Can we constrain the onset
and strength of first order phase transitions with observational data?

> Bayesian analysis for observational constraints and EOS parameters.
[CE, Jiang, Rezzolla]
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Building blocks of the EOSs

Lowest densities (0 — 0.5 ng): Baym-Pethick-Sutherland (BPS) EoS
[Baym, Pethick, Sutherland (1971)]

Low densities (0.5 — 1.2 ns): p(n) = Kn", T €[1.77,3.23]
[Hebeler, Lattimer, Pethick, Schwenk 1303.4662 (ApJ)]

High densities (1.2 — 40 n,): speed of sound parametrization
[Annala, Gorda, Kurkela, Nattild, Vuorinen arXiv:1903.09121]

Highest densities (X 40 n;): perturbative QCD results

_ 3 (X
P = 75 (5) (cl “/Gev_d2x_u2), Xe[L,4, (10)

c =0.9008 di =0.5034 dr =1.452 14, =0.3553 v, =0.9101.
[Kurkela, Romatschke, Vuorinen arXiv:0912.1856; Fraga, Kurkela, Vuorinen arXiv:1311.5154]
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Observational constraints

» NICER: Recent radius measurement of PSR J0740+6620:

Mroy > 2.0875:07(2.07270 38 Mg, , R = 13.773:8(12.397 33, )km.
[Miller et al. arXiv:2105.06979, (Riley et al. arXiv:2105.06980)]

» LIGO/Virgo: constraints on tidal deformability from GW170817:

A < 720 for M epirp = 1.186Mg, and q > 0.73
[LIGO/Virgo: arXiv:1710.05832, arXiv:1805.11579, arXiv:1805.11581]

» Radius measurement of PSR J0030+00451:

M =1.347012(1.4470 1) My, R = 12.717115(13.027 ]3¢ km
[Riley et al. arXiv:1912.05702, (Miller et al. arXiv:1912.05705)]
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Without observational constraints
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Sub-conformal models
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Different number of segments

> Sound speed and MR when using 3,4,5 and 7 segments.

» Features at neutron star densities are robust.

MM
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