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Newton's Gravitation (1687)
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Einsteins Allgemeine Relativitatstheorie (1915)

1
R/u/ - ER = 87TG[\[ TP«V .

Verteilung von Materie bestimmt wie sich Raumzeit kriimmt, Krimmung
der bestimmt wie sich Materie verteilt.
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Schwarze Locher

Karl Schwarzschild

Ereignishorizont < =

M87* (2019)
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Gravitationswellen

LIGO: Laser Interferometer Gravitational-Wave Observatory
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Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions) (bosons)
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Das QCD Phasen Diagram

Theorie der Starken Wechselwirkung: Quantenchromodynamik (QCD)
AbstoBung/Anziehung durch Gluonenaustausch farbgeladener Quarks.

L]
_ A . e*.°.", .'Ungebunden” Confinement
% C et et e o . Quark
5 T A @ ® Anti-Quark
g. ° o o0 ° -~ Gluon
“Gebunden” o

@@@ oo o
©) © '.'::.; @ @

“Teilchen Dichte”

13/25



Was man (nicht) tiber QCD weiB

Temperatur
\

Quark-
materie

Kern-
materie

“Teilchen Dichte”

14/25



Was man (nicht) tiber QCD weiB

Temperatur
\

Quark-
materie

Kern-
materie

“Teilchen Dichte”

14/25



Was man (nicht) tiber QCD weiB

Temperatur
\

Quark-
materie

Kern-
materie

“Teilchen Dichte”

14/25



Was man (nicht) tiber QCD weiB

Temperatur
A
Quark-
materie
Effektive
Modell
odete Kern-
materie

“Teilchen Dichte”

14/25



Was man (nicht) tiber QCD weiB

Temperatur
A
Quark-
materie
Effektive
Modell
odete Kern-
materie

“Teilchen Dichte”

14/25



Was man (nicht) tiber QCD weiB

Temperatur

A

“Teilchen Dichte”

Quark-

materie
Effektive
Modelle

Kern-
materie
Neutronstern
Kerne

14/25



Was man (nicht) tiber QCD weiB

Temperatur
\

Am

Computer

Quark-
materie
Effektive
Modelle
Kern-
materie \INeutronenstern-
kollisionen
Neutronstern “Teilchen Dichte”
Kerne

14/25



Zustandsgleichung

Beziehung zwischen Druck und Energiedichte (Eigenschaft von Materie)
bestimmt
Beziehung zwischen Masse und Radius (Eigenschaft des Sterns)
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Moglichkeiten

1 Aufgeben.
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1 Aufgeben.
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Moglichkeiten

1 Aufgeben:

2 Die Zustandsgleichung erraten.
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Moglichkeiten

1 Aufgeben:
2 Die Zustandsgleichung erraten.

3 Ein losbares Ersatzmodell bauen.
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Die Zustandsgleichung erraten
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Die Zustandsgleichung erraten
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Losbares Ersatzmodell

> Mathematischer Trick: holographisches Prinzip

» Ubersetzt schwieriges Problem in Quantentheorie in einfacheres
Problem in 5 dimensionaler Gravitationstheorie.

> Kombiniert mit traditionellen Modellen bei geringer Dichte.

AdS;/CFT, Korrespondenz

zusétzliche
Dimension

5D Gravitation
(einfacher)
ns ns

[T. Demircik, CE, M. Jarvinen arXiv:2112.12157]
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Neutronenstern Kollisionen
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High-Performance Computing Center Stuttgart

[Picture Copyright: Ben Derzian for HLRS]
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Vorhersagen fiir Gravitationswellen Signale
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Zusammenfassung

Nach schwarzen Lochern sind Neutronensterne die dichtesten Objekte in
unserem Universum.

Beobachtent als Pulsare und Gravitationswellen (+ EM-Strahlung) von
Neutronensternkollisionen.

Beschreibung von dichter Materie in diesen Sternen extrem schwierig.
Offene Frage: Quarkmaterie in Neutronensternen und deren Kollisionen?
Ansatz: Ersatzmodelle fiir QCD aus holographischem Prinzip.

Numerische Simulationen: 3 unterschiedliche Szenarien fiir
Quarkformation, Vorhersagen fiir Gravitationswellen, etc.

Zukunft: Lebenszeit hypermassiver Neutronensterne, Einfluss von Quarks
auf Kollaps nach Kollision, weitere Einschrankung des holographischen
Modells mit zukiinftigen Observationen, etc.
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